Properties

Degree $2$
Conductor $1470$
Sign $-0.991 - 0.126i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999·6-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.499 − 0.866i)10-s + (−0.499 + 0.866i)12-s + 2·13-s − 0.999·15-s + (−0.5 + 0.866i)16-s + (−3 − 5.19i)17-s + (0.499 + 0.866i)18-s + (2 − 3.46i)19-s − 0.999·20-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.223 − 0.387i)5-s − 0.408·6-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (−0.144 + 0.249i)12-s + 0.554·13-s − 0.258·15-s + (−0.125 + 0.216i)16-s + (−0.727 − 1.26i)17-s + (0.117 + 0.204i)18-s + (0.458 − 0.794i)19-s − 0.223·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-0.991 - 0.126i$
Motivic weight: \(1\)
Character: $\chi_{1470} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ -0.991 - 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.266917357\)
\(L(\frac12)\) \(\approx\) \(1.266917357\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 + 0.866i)T \)
3 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 + (-0.5 + 0.866i)T \)
7 \( 1 \)
good11 \( 1 + (-5.5 + 9.52i)T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2 + 3.46i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-3 - 5.19i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 + (9 - 15.5i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.250608206973181109736431461020, −8.417222032209946627169246397026, −7.35221900014169649938140074366, −6.59845097648006794754063757717, −5.58576797438396899624828823568, −4.97211040951406850793019324451, −3.93115261673725026515899214661, −2.75798005298134093626575036806, −1.74889819802170966330111700935, −0.45353104890954810353186116842, 1.80167405542405682818644635247, 3.38162092803765581344209629016, 3.94624877839680820158477878890, 5.10093160939929606062172013613, 5.82427301260982121299444137712, 6.52865387457126036365243403908, 7.35124769642876327770377469486, 8.383995362944676154961101668235, 8.967446964032693723866299657097, 9.986059657471924385468788702042

Graph of the $Z$-function along the critical line