Properties

Degree $2$
Conductor $1470$
Sign $0.605 + 0.795i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s − 0.999·6-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (0.499 − 0.866i)10-s + (0.5 − 0.866i)11-s + (−0.499 − 0.866i)12-s − 13-s + 0.999·15-s + (−0.5 − 0.866i)16-s + (0.499 − 0.866i)18-s + (−1.5 − 2.59i)19-s + 0.999·20-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.223 − 0.387i)5-s − 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (0.158 − 0.273i)10-s + (0.150 − 0.261i)11-s + (−0.144 − 0.249i)12-s − 0.277·13-s + 0.258·15-s + (−0.125 − 0.216i)16-s + (0.117 − 0.204i)18-s + (−0.344 − 0.596i)19-s + 0.223·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $0.605 + 0.795i$
Motivic weight: \(1\)
Character: $\chi_{1470} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 0.605 + 0.795i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8801287083\)
\(L(\frac12)\) \(\approx\) \(0.8801287083\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (0.5 - 0.866i)T \)
5 \( 1 + (0.5 + 0.866i)T \)
7 \( 1 \)
good11 \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.5 + 2.59i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.5 + 6.06i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (5.5 + 9.52i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 11T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + (2.5 + 4.33i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-5.5 + 9.52i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + (3 - 5.19i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-4 - 6.92i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + (5 + 8.66i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.146353683229800724582652377772, −8.693723195080642662925728377664, −7.68998901340847150621717626859, −6.92262637012188349132149420093, −5.94326101734480387602690913637, −5.29671005939261916869100566876, −4.33181151033038606731622145041, −3.73272268281713611396952477324, −2.33887324136620453230471265959, −0.32403681845762107195321269734, 1.42972529726077457029203743100, 2.45322509333451396517058481957, 3.59067646456588672500919073783, 4.42344079111448365833187729963, 5.59649745273060555980122573302, 6.15990554813016074397789566380, 7.30966273343146199358405903726, 7.79346106087266620485001231542, 8.986722804677901127227257430761, 9.753454417185625800572825285905

Graph of the $Z$-function along the critical line