Properties

Label 2-1470-7.4-c1-0-11
Degree $2$
Conductor $1470$
Sign $0.991 - 0.126i$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + 0.999·6-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (0.499 − 0.866i)10-s + (−0.499 − 0.866i)12-s + 2·13-s − 0.999·15-s + (−0.5 − 0.866i)16-s + (3 − 5.19i)17-s + (−0.499 + 0.866i)18-s + (2 + 3.46i)19-s − 0.999·20-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.158 − 0.273i)10-s + (−0.144 − 0.249i)12-s + 0.554·13-s − 0.258·15-s + (−0.125 − 0.216i)16-s + (0.727 − 1.26i)17-s + (−0.117 + 0.204i)18-s + (0.458 + 0.794i)19-s − 0.223·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $0.991 - 0.126i$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1470} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 0.991 - 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.303038941\)
\(L(\frac12)\) \(\approx\) \(1.303038941\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 + (0.5 - 0.866i)T \)
5 \( 1 + (-0.5 - 0.866i)T \)
7 \( 1 \)
good11 \( 1 + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2 - 3.46i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + (-6 - 10.3i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (3 - 5.19i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-6 + 10.3i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1 + 1.73i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (7 - 12.1i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-8 - 13.8i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.544787395011156506717450599516, −9.120917774752511047662408246777, −7.908547669625469590777683335485, −7.31557218086267308855342709734, −6.08259412524113675974725328484, −5.40704564487527155909722844026, −4.25332277444785585055789756385, −3.41083677419244620393415635545, −2.44407716191140478507327963006, −0.973447919990051242184857322500, 0.841438840184345022624982477454, 1.95968904583830715558699823249, 3.51398528563802691072863699888, 4.68066834888700370591490358587, 5.66832432164925006798603081972, 6.13219431412373771440099111812, 7.15801515094960464533727461500, 7.80287190912913755425123588092, 8.673005871746150827978191109198, 9.232894149250039570294093151057

Graph of the $Z$-function along the critical line