L(s) = 1 | + i·2-s − i·3-s − 4-s + (2.18 + 0.489i)5-s + 6-s − i·8-s − 9-s + (−0.489 + 2.18i)10-s − 2.39·11-s + i·12-s − 3.80i·13-s + (0.489 − 2.18i)15-s + 16-s + 1.97i·17-s − i·18-s + 4.17·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (0.975 + 0.218i)5-s + 0.408·6-s − 0.353i·8-s − 0.333·9-s + (−0.154 + 0.689i)10-s − 0.721·11-s + 0.288i·12-s − 1.05i·13-s + (0.126 − 0.563i)15-s + 0.250·16-s + 0.477i·17-s − 0.235i·18-s + 0.956·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.798724472\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.798724472\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2.18 - 0.489i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 2.39T + 11T^{2} \) |
| 13 | \( 1 + 3.80iT - 13T^{2} \) |
| 17 | \( 1 - 1.97iT - 17T^{2} \) |
| 19 | \( 1 - 4.17T + 19T^{2} \) |
| 23 | \( 1 + 8.17iT - 23T^{2} \) |
| 29 | \( 1 - 9.16T + 29T^{2} \) |
| 31 | \( 1 - 1.60T + 31T^{2} \) |
| 37 | \( 1 - 1.26iT - 37T^{2} \) |
| 41 | \( 1 + 3.19T + 41T^{2} \) |
| 43 | \( 1 + 4.90iT - 43T^{2} \) |
| 47 | \( 1 - 3.00iT - 47T^{2} \) |
| 53 | \( 1 + 12.1iT - 53T^{2} \) |
| 59 | \( 1 + 13.0T + 59T^{2} \) |
| 61 | \( 1 - 13.0T + 61T^{2} \) |
| 67 | \( 1 + 5.77iT - 67T^{2} \) |
| 71 | \( 1 - 6.94T + 71T^{2} \) |
| 73 | \( 1 - 0.506iT - 73T^{2} \) |
| 79 | \( 1 - 12.4T + 79T^{2} \) |
| 83 | \( 1 - 1.89iT - 83T^{2} \) |
| 89 | \( 1 + 1.97T + 89T^{2} \) |
| 97 | \( 1 - 12.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.408583362345584851969516023561, −8.349030041090431254435578112473, −8.000121770423606247170117463145, −6.84282922869384176055903669314, −6.36104640112555564255154908233, −5.44826871742068999035526542829, −4.84864937670624148621634675298, −3.23791243839408735456391988555, −2.34196292055494742292842965491, −0.817165491894354347360609516565,
1.25980443879619904709610678984, 2.45248716681999555701346070026, 3.32537994755828334772995216910, 4.56259205733786911895368571223, 5.17685270482764594268797402663, 6.00817997828253780348004983759, 7.11700294719672871858787230921, 8.188261562468839413553655041426, 9.119129794542891095215280994232, 9.617360607733013218036462452564