Properties

Label 8-1470e4-1.1-c1e4-0-3
Degree $8$
Conductor $4.669\times 10^{12}$
Sign $1$
Analytic cond. $18983.5$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 3-s + 10·4-s − 3·5-s − 4·6-s − 20·8-s + 3·9-s + 12·10-s + 10·12-s − 8·13-s − 3·15-s + 35·16-s − 12·18-s − 30·20-s − 6·23-s − 20·24-s + 5·25-s + 32·26-s + 8·27-s + 12·30-s − 56·32-s + 30·36-s − 8·39-s + 60·40-s + 18·41-s − 9·45-s + 24·46-s + ⋯
L(s)  = 1  − 2.82·2-s + 0.577·3-s + 5·4-s − 1.34·5-s − 1.63·6-s − 7.07·8-s + 9-s + 3.79·10-s + 2.88·12-s − 2.21·13-s − 0.774·15-s + 35/4·16-s − 2.82·18-s − 6.70·20-s − 1.25·23-s − 4.08·24-s + 25-s + 6.27·26-s + 1.53·27-s + 2.19·30-s − 9.89·32-s + 5·36-s − 1.28·39-s + 9.48·40-s + 2.81·41-s − 1.34·45-s + 3.53·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(18983.5\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.08203690356\)
\(L(\frac12)\) \(\approx\) \(0.08203690356\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{4} \)
3$C_2^2$ \( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good11$D_4\times C_2$ \( 1 - 25 T^{2} + 324 T^{4} - 25 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
23$D_{4}$ \( ( 1 + 3 T + 40 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 47 T^{2} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 61 T^{2} + 2184 T^{4} - 61 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 + 56 T^{2} + 2334 T^{4} + 56 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 9 T + 94 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 49 T^{2} + 660 T^{4} - 49 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 112 T^{2} + 6366 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 - 3 T + 100 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 - 9 T + 64 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 73 T^{2} + 2760 T^{4} - 73 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 205 T^{2} + 18816 T^{4} - 205 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 208 T^{2} + 19710 T^{4} - 208 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
79$D_{4}$ \( ( 1 - T + 84 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 190 T^{2} + 18051 T^{4} - 190 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 3 T + 172 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 13 T + 162 T^{2} + 13 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.86312767863944714342216889134, −6.74476466543811615451028628138, −6.60435305875096911166052674978, −6.55435547402494762405103489802, −6.04220996845439553859974218777, −5.69531783763813326335933050794, −5.52923623971073379891182565642, −5.45337106132197789571519096472, −5.02990051690629300453464516254, −4.83383657306777843223296569265, −4.24172254339516635578841387428, −4.19672429070276018582710666226, −4.18297389085895659119969362874, −3.81415785378694642388076338441, −3.54860932470978812693029711503, −3.05536164915501303380330277931, −2.67371401790238602243684260157, −2.63577472445902719088369971702, −2.44751314752646849657416039542, −2.35510228566111763114089670978, −1.68198667446727389748374353355, −1.34030470561268599264958109619, −1.21512007577811582132652547180, −0.64818794872419168179988565399, −0.12481520335432469099098900151, 0.12481520335432469099098900151, 0.64818794872419168179988565399, 1.21512007577811582132652547180, 1.34030470561268599264958109619, 1.68198667446727389748374353355, 2.35510228566111763114089670978, 2.44751314752646849657416039542, 2.63577472445902719088369971702, 2.67371401790238602243684260157, 3.05536164915501303380330277931, 3.54860932470978812693029711503, 3.81415785378694642388076338441, 4.18297389085895659119969362874, 4.19672429070276018582710666226, 4.24172254339516635578841387428, 4.83383657306777843223296569265, 5.02990051690629300453464516254, 5.45337106132197789571519096472, 5.52923623971073379891182565642, 5.69531783763813326335933050794, 6.04220996845439553859974218777, 6.55435547402494762405103489802, 6.60435305875096911166052674978, 6.74476466543811615451028628138, 6.86312767863944714342216889134

Graph of the $Z$-function along the critical line