Properties

Label 4-147e2-1.1-c5e2-0-9
Degree $4$
Conductor $21609$
Sign $1$
Analytic cond. $555.847$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·2-s + 9·3-s + 32·4-s + 6·5-s + 54·6-s + 360·8-s + 36·10-s + 564·11-s + 288·12-s − 1.27e3·13-s + 54·15-s + 2.16e3·16-s + 882·17-s − 556·19-s + 192·20-s + 3.38e3·22-s + 840·23-s + 3.24e3·24-s + 3.12e3·25-s − 7.65e3·26-s − 729·27-s + 9.27e3·29-s + 324·30-s + 4.40e3·31-s + 1.15e4·32-s + 5.07e3·33-s + 5.29e3·34-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.577·3-s + 4-s + 0.107·5-s + 0.612·6-s + 1.98·8-s + 0.113·10-s + 1.40·11-s + 0.577·12-s − 2.09·13-s + 0.0619·15-s + 2.10·16-s + 0.740·17-s − 0.353·19-s + 0.107·20-s + 1.49·22-s + 0.331·23-s + 1.14·24-s + 25-s − 2.22·26-s − 0.192·27-s + 2.04·29-s + 0.0657·30-s + 0.822·31-s + 1.98·32-s + 0.811·33-s + 0.785·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21609\)    =    \(3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(555.847\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 21609,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(9.725218301\)
\(L(\frac12)\) \(\approx\) \(9.725218301\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - p^{2} T + p^{4} T^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - 3 p T + p^{2} T^{2} - 3 p^{6} T^{3} + p^{10} T^{4} \)
5$C_2^2$ \( 1 - 6 T - 3089 T^{2} - 6 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 564 T + 157045 T^{2} - 564 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2$ \( ( 1 + 638 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 882 T - 641933 T^{2} - 882 p^{5} T^{3} + p^{10} T^{4} \)
19$C_2^2$ \( 1 + 556 T - 2166963 T^{2} + 556 p^{5} T^{3} + p^{10} T^{4} \)
23$C_2^2$ \( 1 - 840 T - 5730743 T^{2} - 840 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2$ \( ( 1 - 4638 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 4400 T - 9269151 T^{2} - 4400 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2^2$ \( 1 - 2410 T - 63535857 T^{2} - 2410 p^{5} T^{3} + p^{10} T^{4} \)
41$C_2$ \( ( 1 - 6870 T + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 9644 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 18672 T + 119298577 T^{2} + 18672 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2^2$ \( 1 + 33750 T + 720867007 T^{2} + 33750 p^{5} T^{3} + p^{10} T^{4} \)
59$C_2^2$ \( 1 + 18084 T - 387893243 T^{2} + 18084 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 - 39758 T + 736102263 T^{2} - 39758 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 23068 T - 817992483 T^{2} - 23068 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 + 4248 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 41110 T - 383039493 T^{2} + 41110 p^{5} T^{3} + p^{10} T^{4} \)
79$C_2^2$ \( 1 + 21920 T - 2596569999 T^{2} + 21920 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2$ \( ( 1 + 82452 T + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 94086 T + 3268115947 T^{2} + 94086 p^{5} T^{3} + p^{10} T^{4} \)
97$C_2$ \( ( 1 + 49442 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.38637819544311159614023452449, −12.28826732778739372803365432483, −11.25285101700226641835806056872, −11.24593080364823343096891235868, −10.21785686471469451606614252147, −9.981657680043451480668025341524, −9.481217303539796639845125470487, −8.678594054529886608447847133321, −8.027834582003234374403179407300, −7.58075746044849668533204025950, −6.87279101375559204176294763135, −6.66211101970061420107310415456, −5.74804721541467509231254953905, −4.98522971172979653374841502881, −4.44644668323964549927164612433, −4.14357440964650173192268079544, −2.86478019883325987628196304306, −2.74363700874828018647191067535, −1.60958163553911845486059303783, −0.926515544954513050627977026271, 0.926515544954513050627977026271, 1.60958163553911845486059303783, 2.74363700874828018647191067535, 2.86478019883325987628196304306, 4.14357440964650173192268079544, 4.44644668323964549927164612433, 4.98522971172979653374841502881, 5.74804721541467509231254953905, 6.66211101970061420107310415456, 6.87279101375559204176294763135, 7.58075746044849668533204025950, 8.027834582003234374403179407300, 8.678594054529886608447847133321, 9.481217303539796639845125470487, 9.981657680043451480668025341524, 10.21785686471469451606614252147, 11.24593080364823343096891235868, 11.25285101700226641835806056872, 12.28826732778739372803365432483, 12.38637819544311159614023452449

Graph of the $Z$-function along the critical line