Properties

Label 4-147e2-1.1-c5e2-0-13
Degree $4$
Conductor $21609$
Sign $1$
Analytic cond. $555.847$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·2-s − 9·3-s + 32·4-s − 6·5-s − 54·6-s + 360·8-s − 36·10-s + 564·11-s − 288·12-s + 1.27e3·13-s + 54·15-s + 2.16e3·16-s − 882·17-s + 556·19-s − 192·20-s + 3.38e3·22-s + 840·23-s − 3.24e3·24-s + 3.12e3·25-s + 7.65e3·26-s + 729·27-s + 9.27e3·29-s + 324·30-s − 4.40e3·31-s + 1.15e4·32-s − 5.07e3·33-s − 5.29e3·34-s + ⋯
L(s)  = 1  + 1.06·2-s − 0.577·3-s + 4-s − 0.107·5-s − 0.612·6-s + 1.98·8-s − 0.113·10-s + 1.40·11-s − 0.577·12-s + 2.09·13-s + 0.0619·15-s + 2.10·16-s − 0.740·17-s + 0.353·19-s − 0.107·20-s + 1.49·22-s + 0.331·23-s − 1.14·24-s + 25-s + 2.22·26-s + 0.192·27-s + 2.04·29-s + 0.0657·30-s − 0.822·31-s + 1.98·32-s − 0.811·33-s − 0.785·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21609\)    =    \(3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(555.847\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 21609,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(7.836026128\)
\(L(\frac12)\) \(\approx\) \(7.836026128\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p^{2} T + p^{4} T^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - 3 p T + p^{2} T^{2} - 3 p^{6} T^{3} + p^{10} T^{4} \)
5$C_2^2$ \( 1 + 6 T - 3089 T^{2} + 6 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 564 T + 157045 T^{2} - 564 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2$ \( ( 1 - 638 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 882 T - 641933 T^{2} + 882 p^{5} T^{3} + p^{10} T^{4} \)
19$C_2^2$ \( 1 - 556 T - 2166963 T^{2} - 556 p^{5} T^{3} + p^{10} T^{4} \)
23$C_2^2$ \( 1 - 840 T - 5730743 T^{2} - 840 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2$ \( ( 1 - 4638 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 4400 T - 9269151 T^{2} + 4400 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2^2$ \( 1 - 2410 T - 63535857 T^{2} - 2410 p^{5} T^{3} + p^{10} T^{4} \)
41$C_2$ \( ( 1 + 6870 T + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 9644 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 18672 T + 119298577 T^{2} - 18672 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2^2$ \( 1 + 33750 T + 720867007 T^{2} + 33750 p^{5} T^{3} + p^{10} T^{4} \)
59$C_2^2$ \( 1 - 18084 T - 387893243 T^{2} - 18084 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 + 39758 T + 736102263 T^{2} + 39758 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 23068 T - 817992483 T^{2} - 23068 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 + 4248 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 41110 T - 383039493 T^{2} - 41110 p^{5} T^{3} + p^{10} T^{4} \)
79$C_2^2$ \( 1 + 21920 T - 2596569999 T^{2} + 21920 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2$ \( ( 1 - 82452 T + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 94086 T + 3268115947 T^{2} - 94086 p^{5} T^{3} + p^{10} T^{4} \)
97$C_2$ \( ( 1 - 49442 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.45372071946020634920031330111, −11.90778884714561719284705689024, −11.29464208594509385140633168421, −11.12968398966023896321589912350, −10.54782916278907889013904056008, −10.27498540426477541396479886761, −9.022008078519414652505211453499, −8.960664635691604812565763139021, −8.071052544266762428696511892278, −7.49777515162677680518887614385, −6.63027983461981637133109721718, −6.48155236667716137173350538658, −5.97821623296091101697321192634, −4.98185980028052284672400834756, −4.68743937478067300448234885841, −3.81682250413544175813984633584, −3.53957087168519591641235408804, −2.38050390290165697923108390506, −1.14587030938156797064657435408, −1.13870219126878295669603293487, 1.13870219126878295669603293487, 1.14587030938156797064657435408, 2.38050390290165697923108390506, 3.53957087168519591641235408804, 3.81682250413544175813984633584, 4.68743937478067300448234885841, 4.98185980028052284672400834756, 5.97821623296091101697321192634, 6.48155236667716137173350538658, 6.63027983461981637133109721718, 7.49777515162677680518887614385, 8.071052544266762428696511892278, 8.960664635691604812565763139021, 9.022008078519414652505211453499, 10.27498540426477541396479886761, 10.54782916278907889013904056008, 11.12968398966023896321589912350, 11.29464208594509385140633168421, 11.90778884714561719284705689024, 12.45372071946020634920031330111

Graph of the $Z$-function along the critical line