Properties

Label 2-147-1.1-c5-0-3
Degree $2$
Conductor $147$
Sign $1$
Analytic cond. $23.5764$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.790·2-s + 9·3-s − 31.3·4-s − 104.·5-s − 7.11·6-s + 50.1·8-s + 81·9-s + 82.3·10-s − 497.·11-s − 282.·12-s − 206.·13-s − 937.·15-s + 964.·16-s + 63.1·17-s − 64.0·18-s + 1.32e3·19-s + 3.26e3·20-s + 393.·22-s − 194.·23-s + 451.·24-s + 7.73e3·25-s + 163.·26-s + 729·27-s + 4.32e3·29-s + 741.·30-s − 7.52e3·31-s − 2.36e3·32-s + ⋯
L(s)  = 1  − 0.139·2-s + 0.577·3-s − 0.980·4-s − 1.86·5-s − 0.0807·6-s + 0.276·8-s + 0.333·9-s + 0.260·10-s − 1.24·11-s − 0.566·12-s − 0.338·13-s − 1.07·15-s + 0.941·16-s + 0.0530·17-s − 0.0465·18-s + 0.841·19-s + 1.82·20-s + 0.173·22-s − 0.0766·23-s + 0.159·24-s + 2.47·25-s + 0.0473·26-s + 0.192·27-s + 0.954·29-s + 0.150·30-s − 1.40·31-s − 0.408·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(23.5764\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7927660807\)
\(L(\frac12)\) \(\approx\) \(0.7927660807\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
7 \( 1 \)
good2 \( 1 + 0.790T + 32T^{2} \)
5 \( 1 + 104.T + 3.12e3T^{2} \)
11 \( 1 + 497.T + 1.61e5T^{2} \)
13 \( 1 + 206.T + 3.71e5T^{2} \)
17 \( 1 - 63.1T + 1.41e6T^{2} \)
19 \( 1 - 1.32e3T + 2.47e6T^{2} \)
23 \( 1 + 194.T + 6.43e6T^{2} \)
29 \( 1 - 4.32e3T + 2.05e7T^{2} \)
31 \( 1 + 7.52e3T + 2.86e7T^{2} \)
37 \( 1 - 1.03e4T + 6.93e7T^{2} \)
41 \( 1 + 4.18e3T + 1.15e8T^{2} \)
43 \( 1 - 5.96e3T + 1.47e8T^{2} \)
47 \( 1 + 4.38e3T + 2.29e8T^{2} \)
53 \( 1 - 1.77e4T + 4.18e8T^{2} \)
59 \( 1 - 3.50e3T + 7.14e8T^{2} \)
61 \( 1 + 1.06e4T + 8.44e8T^{2} \)
67 \( 1 + 1.32e4T + 1.35e9T^{2} \)
71 \( 1 - 3.88e4T + 1.80e9T^{2} \)
73 \( 1 - 3.13e4T + 2.07e9T^{2} \)
79 \( 1 - 3.94e4T + 3.07e9T^{2} \)
83 \( 1 + 1.02e5T + 3.93e9T^{2} \)
89 \( 1 + 1.12e5T + 5.58e9T^{2} \)
97 \( 1 - 3.03e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.30392046395936098176315055148, −11.12917455502319321314929667161, −10.00236002354133476817283682335, −8.789375788407874978613129653287, −7.943688682887861900176996803465, −7.38926743240038113432561634796, −5.12989815279090033022644430290, −4.12436066914436054174929921631, −3.05883832929047855325040438754, −0.57607934224820078751726042847, 0.57607934224820078751726042847, 3.05883832929047855325040438754, 4.12436066914436054174929921631, 5.12989815279090033022644430290, 7.38926743240038113432561634796, 7.943688682887861900176996803465, 8.789375788407874978613129653287, 10.00236002354133476817283682335, 11.12917455502319321314929667161, 12.30392046395936098176315055148

Graph of the $Z$-function along the critical line