Properties

Label 2-147-1.1-c5-0-8
Degree $2$
Conductor $147$
Sign $1$
Analytic cond. $23.5764$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.790·2-s − 9·3-s − 31.3·4-s + 104.·5-s + 7.11·6-s + 50.1·8-s + 81·9-s − 82.3·10-s − 497.·11-s + 282.·12-s + 206.·13-s − 937.·15-s + 964.·16-s − 63.1·17-s − 64.0·18-s − 1.32e3·19-s − 3.26e3·20-s + 393.·22-s − 194.·23-s − 451.·24-s + 7.73e3·25-s − 163.·26-s − 729·27-s + 4.32e3·29-s + 741.·30-s + 7.52e3·31-s − 2.36e3·32-s + ⋯
L(s)  = 1  − 0.139·2-s − 0.577·3-s − 0.980·4-s + 1.86·5-s + 0.0807·6-s + 0.276·8-s + 0.333·9-s − 0.260·10-s − 1.24·11-s + 0.566·12-s + 0.338·13-s − 1.07·15-s + 0.941·16-s − 0.0530·17-s − 0.0465·18-s − 0.841·19-s − 1.82·20-s + 0.173·22-s − 0.0766·23-s − 0.159·24-s + 2.47·25-s − 0.0473·26-s − 0.192·27-s + 0.954·29-s + 0.150·30-s + 1.40·31-s − 0.408·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(23.5764\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.526964007\)
\(L(\frac12)\) \(\approx\) \(1.526964007\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
7 \( 1 \)
good2 \( 1 + 0.790T + 32T^{2} \)
5 \( 1 - 104.T + 3.12e3T^{2} \)
11 \( 1 + 497.T + 1.61e5T^{2} \)
13 \( 1 - 206.T + 3.71e5T^{2} \)
17 \( 1 + 63.1T + 1.41e6T^{2} \)
19 \( 1 + 1.32e3T + 2.47e6T^{2} \)
23 \( 1 + 194.T + 6.43e6T^{2} \)
29 \( 1 - 4.32e3T + 2.05e7T^{2} \)
31 \( 1 - 7.52e3T + 2.86e7T^{2} \)
37 \( 1 - 1.03e4T + 6.93e7T^{2} \)
41 \( 1 - 4.18e3T + 1.15e8T^{2} \)
43 \( 1 - 5.96e3T + 1.47e8T^{2} \)
47 \( 1 - 4.38e3T + 2.29e8T^{2} \)
53 \( 1 - 1.77e4T + 4.18e8T^{2} \)
59 \( 1 + 3.50e3T + 7.14e8T^{2} \)
61 \( 1 - 1.06e4T + 8.44e8T^{2} \)
67 \( 1 + 1.32e4T + 1.35e9T^{2} \)
71 \( 1 - 3.88e4T + 1.80e9T^{2} \)
73 \( 1 + 3.13e4T + 2.07e9T^{2} \)
79 \( 1 - 3.94e4T + 3.07e9T^{2} \)
83 \( 1 - 1.02e5T + 3.93e9T^{2} \)
89 \( 1 - 1.12e5T + 5.58e9T^{2} \)
97 \( 1 + 3.03e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46155027305803217576526036857, −10.67761892417320606847678801582, −10.15127395170766728494285441830, −9.248020099471478496805133942293, −8.136909881077012312757723096259, −6.40089641971576003044274838613, −5.54665988761084605530048122176, −4.61462153694137126622245428274, −2.47598522849323675211513679697, −0.888534743569429170056968536288, 0.888534743569429170056968536288, 2.47598522849323675211513679697, 4.61462153694137126622245428274, 5.54665988761084605530048122176, 6.40089641971576003044274838613, 8.136909881077012312757723096259, 9.248020099471478496805133942293, 10.15127395170766728494285441830, 10.67761892417320606847678801582, 12.46155027305803217576526036857

Graph of the $Z$-function along the critical line