Properties

Label 2-147-1.1-c5-0-2
Degree $2$
Conductor $147$
Sign $1$
Analytic cond. $23.5764$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.18·2-s − 9·3-s + 52.2·4-s − 22.0·5-s + 82.6·6-s − 186.·8-s + 81·9-s + 202.·10-s + 416.·11-s − 470.·12-s − 797.·13-s + 198.·15-s + 37.3·16-s + 1.37e3·17-s − 743.·18-s − 2.31e3·19-s − 1.15e3·20-s − 3.82e3·22-s − 955.·23-s + 1.67e3·24-s − 2.63e3·25-s + 7.32e3·26-s − 729·27-s − 7.03e3·29-s − 1.82e3·30-s − 1.26e3·31-s + 5.61e3·32-s + ⋯
L(s)  = 1  − 1.62·2-s − 0.577·3-s + 1.63·4-s − 0.394·5-s + 0.937·6-s − 1.02·8-s + 0.333·9-s + 0.640·10-s + 1.03·11-s − 0.943·12-s − 1.30·13-s + 0.227·15-s + 0.0364·16-s + 1.15·17-s − 0.541·18-s − 1.46·19-s − 0.645·20-s − 1.68·22-s − 0.376·23-s + 0.594·24-s − 0.844·25-s + 2.12·26-s − 0.192·27-s − 1.55·29-s − 0.369·30-s − 0.235·31-s + 0.970·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(23.5764\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4538217336\)
\(L(\frac12)\) \(\approx\) \(0.4538217336\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
7 \( 1 \)
good2 \( 1 + 9.18T + 32T^{2} \)
5 \( 1 + 22.0T + 3.12e3T^{2} \)
11 \( 1 - 416.T + 1.61e5T^{2} \)
13 \( 1 + 797.T + 3.71e5T^{2} \)
17 \( 1 - 1.37e3T + 1.41e6T^{2} \)
19 \( 1 + 2.31e3T + 2.47e6T^{2} \)
23 \( 1 + 955.T + 6.43e6T^{2} \)
29 \( 1 + 7.03e3T + 2.05e7T^{2} \)
31 \( 1 + 1.26e3T + 2.86e7T^{2} \)
37 \( 1 - 9.77e3T + 6.93e7T^{2} \)
41 \( 1 - 5.40e3T + 1.15e8T^{2} \)
43 \( 1 - 1.96e4T + 1.47e8T^{2} \)
47 \( 1 + 2.05e3T + 2.29e8T^{2} \)
53 \( 1 - 1.80e4T + 4.18e8T^{2} \)
59 \( 1 + 7.43e3T + 7.14e8T^{2} \)
61 \( 1 + 3.49e3T + 8.44e8T^{2} \)
67 \( 1 - 1.58e4T + 1.35e9T^{2} \)
71 \( 1 - 5.81e4T + 1.80e9T^{2} \)
73 \( 1 + 3.91e4T + 2.07e9T^{2} \)
79 \( 1 - 9.76e3T + 3.07e9T^{2} \)
83 \( 1 - 7.03e4T + 3.93e9T^{2} \)
89 \( 1 + 1.44e5T + 5.58e9T^{2} \)
97 \( 1 - 7.93e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.78778742558576801908053796560, −10.96553251873265945790879391251, −9.911687019331489087886981059640, −9.226895724240787243027349758834, −7.920021477549789167324028620144, −7.19223440578622148344131217763, −5.95581419629759966610896774074, −4.16943160633210232698693632090, −2.03985272499899840589554176227, −0.57327568500100226838185803414, 0.57327568500100226838185803414, 2.03985272499899840589554176227, 4.16943160633210232698693632090, 5.95581419629759966610896774074, 7.19223440578622148344131217763, 7.920021477549789167324028620144, 9.226895724240787243027349758834, 9.911687019331489087886981059640, 10.96553251873265945790879391251, 11.78778742558576801908053796560

Graph of the $Z$-function along the critical line