Properties

Label 2-147-147.101-c3-0-17
Degree $2$
Conductor $147$
Sign $0.981 + 0.191i$
Analytic cond. $8.67328$
Root an. cond. $2.94504$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.283 + 0.111i)2-s + (−4.60 − 2.41i)3-s + (−5.79 − 5.37i)4-s + (14.9 + 10.2i)5-s + (−1.03 − 1.19i)6-s + (−13.0 + 13.1i)7-s + (−2.09 − 4.35i)8-s + (15.3 + 22.2i)9-s + (3.10 + 4.55i)10-s + (−4.06 − 26.9i)11-s + (13.6 + 38.7i)12-s + (40.2 − 32.1i)13-s + (−5.14 + 2.28i)14-s + (−44.2 − 83.1i)15-s + (4.61 + 61.6i)16-s + (81.2 + 25.0i)17-s + ⋯
L(s)  = 1  + (0.100 + 0.0392i)2-s + (−0.885 − 0.465i)3-s + (−0.724 − 0.672i)4-s + (1.33 + 0.913i)5-s + (−0.0703 − 0.0813i)6-s + (−0.702 + 0.711i)7-s + (−0.0927 − 0.192i)8-s + (0.567 + 0.823i)9-s + (0.0982 + 0.144i)10-s + (−0.111 − 0.738i)11-s + (0.328 + 0.932i)12-s + (0.859 − 0.685i)13-s + (−0.0982 + 0.0436i)14-s + (−0.761 − 1.43i)15-s + (0.0721 + 0.962i)16-s + (1.15 + 0.357i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.191i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.981 + 0.191i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $0.981 + 0.191i$
Analytic conductor: \(8.67328\)
Root analytic conductor: \(2.94504\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{147} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :3/2),\ 0.981 + 0.191i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.35635 - 0.131161i\)
\(L(\frac12)\) \(\approx\) \(1.35635 - 0.131161i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (4.60 + 2.41i)T \)
7 \( 1 + (13.0 - 13.1i)T \)
good2 \( 1 + (-0.283 - 0.111i)T + (5.86 + 5.44i)T^{2} \)
5 \( 1 + (-14.9 - 10.2i)T + (45.6 + 116. i)T^{2} \)
11 \( 1 + (4.06 + 26.9i)T + (-1.27e3 + 392. i)T^{2} \)
13 \( 1 + (-40.2 + 32.1i)T + (488. - 2.14e3i)T^{2} \)
17 \( 1 + (-81.2 - 25.0i)T + (4.05e3 + 2.76e3i)T^{2} \)
19 \( 1 + (-94.1 + 54.3i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (8.40 + 27.2i)T + (-1.00e4 + 6.85e3i)T^{2} \)
29 \( 1 + (-251. + 57.3i)T + (2.19e4 - 1.05e4i)T^{2} \)
31 \( 1 + (-33.3 - 19.2i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (84.6 - 78.5i)T + (3.78e3 - 5.05e4i)T^{2} \)
41 \( 1 + (416. - 200. i)T + (4.29e4 - 5.38e4i)T^{2} \)
43 \( 1 + (-296. - 143. i)T + (4.95e4 + 6.21e4i)T^{2} \)
47 \( 1 + (67.7 - 172. i)T + (-7.61e4 - 7.06e4i)T^{2} \)
53 \( 1 + (-200. + 215. i)T + (-1.11e4 - 1.48e5i)T^{2} \)
59 \( 1 + (-433. + 295. i)T + (7.50e4 - 1.91e5i)T^{2} \)
61 \( 1 + (-467. - 503. i)T + (-1.69e4 + 2.26e5i)T^{2} \)
67 \( 1 + (123. - 213. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + (306. + 70.0i)T + (3.22e5 + 1.55e5i)T^{2} \)
73 \( 1 + (263. - 103. i)T + (2.85e5 - 2.64e5i)T^{2} \)
79 \( 1 + (-52.8 - 91.5i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + (280. - 352. i)T + (-1.27e5 - 5.57e5i)T^{2} \)
89 \( 1 + (1.02e3 + 155. i)T + (6.73e5 + 2.07e5i)T^{2} \)
97 \( 1 + 214. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81565668223319577874280757219, −11.47271973289269790104920696822, −10.24249993730846232531067753752, −9.944308114298720556310950749406, −8.483684862221818643148297096165, −6.63686926137944411756224117217, −5.90342800331336392743113761097, −5.34846320673357789190502531155, −2.98995828000366056161740662044, −1.07790496497885169981107689790, 1.05143258939320492847489903986, 3.64714904169726314073492113130, 4.86533675701954660410616189918, 5.76351271548647262482256291837, 7.11207372930922577796800342723, 8.786750085769800606851774603463, 9.763947636530014863865719466286, 10.16387751887592738610436870178, 11.96577271586447671749506398616, 12.54710838911248945572684319296

Graph of the $Z$-function along the critical line