| L(s) = 1 | + (1.5 − 2.59i)2-s + (−1.5 − 2.59i)3-s + (−0.5 − 0.866i)4-s + (−9 + 15.5i)5-s − 9·6-s + 21·8-s + (−4.5 + 7.79i)9-s + (27 + 46.7i)10-s + (18 + 31.1i)11-s + (−1.50 + 2.59i)12-s + 34·13-s + 54·15-s + (35.5 − 61.4i)16-s + (21 + 36.3i)17-s + (13.5 + 23.3i)18-s + (−62 + 107. i)19-s + ⋯ |
| L(s) = 1 | + (0.530 − 0.918i)2-s + (−0.288 − 0.499i)3-s + (−0.0625 − 0.108i)4-s + (−0.804 + 1.39i)5-s − 0.612·6-s + 0.928·8-s + (−0.166 + 0.288i)9-s + (0.853 + 1.47i)10-s + (0.493 + 0.854i)11-s + (−0.0360 + 0.0625i)12-s + 0.725·13-s + 0.929·15-s + (0.554 − 0.960i)16-s + (0.299 + 0.518i)17-s + (0.176 + 0.306i)18-s + (−0.748 + 1.29i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.79554 + 0.228812i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.79554 + 0.228812i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.5 + 2.59i)T \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-1.5 + 2.59i)T + (-4 - 6.92i)T^{2} \) |
| 5 | \( 1 + (9 - 15.5i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-18 - 31.1i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 34T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-21 - 36.3i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (62 - 107. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 102T + 2.43e4T^{2} \) |
| 31 | \( 1 + (80 + 138. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (199 - 344. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 318T + 6.89e4T^{2} \) |
| 43 | \( 1 + 268T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-120 + 207. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-249 - 431. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (66 + 114. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-199 + 344. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (46 + 79.6i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 720T + 3.57e5T^{2} \) |
| 73 | \( 1 + (251 + 434. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-512 + 886. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 204T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-177 + 306. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 286T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.28697981330904298992745168692, −11.79728383950446893812596426536, −10.81465395515391972633576825846, −10.20660626282546537536112853442, −8.152239575144576424737485159807, −7.23993331226180311749015294910, −6.23722269931315501419025048534, −4.23243873122062232317082893201, −3.28215871179917428937253436812, −1.82498344050438019689311163934,
0.831499309280959607462589815620, 3.89271019212947467248293205036, 4.83661135509476751219375943893, 5.75745178459349341440121657357, 7.02190256718262818442342952800, 8.389666447589990346470292606482, 9.072115043447400043218390156351, 10.71907371309498578405815356369, 11.57055594512183032906997135319, 12.71218598603003160721609342051