Properties

Label 4-147e2-1.1-c3e2-0-5
Degree $4$
Conductor $21609$
Sign $1$
Analytic cond. $75.2257$
Root an. cond. $2.94504$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s − 3·3-s + 8·4-s − 18·5-s − 9·6-s + 45·8-s − 54·10-s + 36·11-s − 24·12-s + 68·13-s + 54·15-s + 135·16-s + 42·17-s − 124·19-s − 144·20-s + 108·22-s − 135·24-s + 125·25-s + 204·26-s + 27·27-s + 204·29-s + 162·30-s − 160·31-s + 360·32-s − 108·33-s + 126·34-s − 398·37-s + ⋯
L(s)  = 1  + 1.06·2-s − 0.577·3-s + 4-s − 1.60·5-s − 0.612·6-s + 1.98·8-s − 1.70·10-s + 0.986·11-s − 0.577·12-s + 1.45·13-s + 0.929·15-s + 2.10·16-s + 0.599·17-s − 1.49·19-s − 1.60·20-s + 1.04·22-s − 1.14·24-s + 25-s + 1.53·26-s + 0.192·27-s + 1.30·29-s + 0.985·30-s − 0.926·31-s + 1.98·32-s − 0.569·33-s + 0.635·34-s − 1.76·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21609\)    =    \(3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(75.2257\)
Root analytic conductor: \(2.94504\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 21609,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.276332127\)
\(L(\frac12)\) \(\approx\) \(3.276332127\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T + p^{2} T^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - 3 T + T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 + 18 T + 199 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 36 T - 35 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 34 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 42 T - 3149 T^{2} - 42 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 124 T + 8517 T^{2} + 124 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - p^{3} T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 102 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 160 T - 4191 T^{2} + 160 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 398 T + 107751 T^{2} + 398 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 318 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 268 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 240 T - 46223 T^{2} - 240 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 498 T + 99127 T^{2} - 498 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 + 132 T - 187955 T^{2} + 132 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 398 T - 68577 T^{2} - 398 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 92 T - 292299 T^{2} + 92 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 720 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 502 T - 137013 T^{2} + 502 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 - 1024 T + 555537 T^{2} - 1024 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 - 204 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 354 T - 579653 T^{2} - 354 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 286 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71218598603003160721609342051, −12.28697981330904298992745168692, −11.79728383950446893812596426536, −11.57055594512183032906997135319, −10.81465395515391972633576825846, −10.71907371309498578405815356369, −10.20660626282546537536112853442, −9.072115043447400043218390156351, −8.389666447589990346470292606482, −8.152239575144576424737485159807, −7.23993331226180311749015294910, −7.02190256718262818442342952800, −6.23722269931315501419025048534, −5.75745178459349341440121657357, −4.83661135509476751219375943893, −4.23243873122062232317082893201, −3.89271019212947467248293205036, −3.28215871179917428937253436812, −1.82498344050438019689311163934, −0.831499309280959607462589815620, 0.831499309280959607462589815620, 1.82498344050438019689311163934, 3.28215871179917428937253436812, 3.89271019212947467248293205036, 4.23243873122062232317082893201, 4.83661135509476751219375943893, 5.75745178459349341440121657357, 6.23722269931315501419025048534, 7.02190256718262818442342952800, 7.23993331226180311749015294910, 8.152239575144576424737485159807, 8.389666447589990346470292606482, 9.072115043447400043218390156351, 10.20660626282546537536112853442, 10.71907371309498578405815356369, 10.81465395515391972633576825846, 11.57055594512183032906997135319, 11.79728383950446893812596426536, 12.28697981330904298992745168692, 12.71218598603003160721609342051

Graph of the $Z$-function along the critical line