Properties

Label 4-147e2-1.1-c3e2-0-2
Degree $4$
Conductor $21609$
Sign $1$
Analytic cond. $75.2257$
Root an. cond. $2.94504$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 3·3-s + 8·4-s − 4·5-s + 12·6-s − 32·8-s + 16·10-s − 62·11-s − 24·12-s + 124·13-s + 12·15-s + 128·16-s + 84·17-s + 100·19-s − 32·20-s + 248·22-s + 42·23-s + 96·24-s + 125·25-s − 496·26-s + 27·27-s − 20·29-s − 48·30-s − 48·31-s − 256·32-s + 186·33-s − 336·34-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 0.357·5-s + 0.816·6-s − 1.41·8-s + 0.505·10-s − 1.69·11-s − 0.577·12-s + 2.64·13-s + 0.206·15-s + 2·16-s + 1.19·17-s + 1.20·19-s − 0.357·20-s + 2.40·22-s + 0.380·23-s + 0.816·24-s + 25-s − 3.74·26-s + 0.192·27-s − 0.128·29-s − 0.292·30-s − 0.278·31-s − 1.41·32-s + 0.981·33-s − 1.69·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21609 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21609\)    =    \(3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(75.2257\)
Root analytic conductor: \(2.94504\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 21609,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7272198123\)
\(L(\frac12)\) \(\approx\) \(0.7272198123\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T + p^{2} T^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 + p^{2} T + p^{3} T^{2} + p^{5} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 + 4 T - 109 T^{2} + 4 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 62 T + 2513 T^{2} + 62 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 62 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 84 T + 2143 T^{2} - 84 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 100 T + 3141 T^{2} - 100 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 42 T - 10403 T^{2} - 42 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 10 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 48 T - 27487 T^{2} + 48 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 246 T + 9863 T^{2} - 246 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 248 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 68 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 324 T + 1153 T^{2} - 324 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 258 T - 82313 T^{2} + 258 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 120 T - 190979 T^{2} - 120 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 622 T + 159903 T^{2} - 622 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 904 T + 516453 T^{2} + 904 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 678 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 642 T + 23147 T^{2} + 642 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 740 T + 54561 T^{2} + 740 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 + 468 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 200 T - 664969 T^{2} - 200 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 1266 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85479486593872332891213667203, −12.20654698366684309537075686440, −11.44755393789103818578019655473, −11.35968158873318476621115788050, −10.66414978980226135028134949260, −10.38013495944352052875608792251, −9.810059897962084587013298135216, −9.038279889944003102409311114258, −8.781185927318730634156833235090, −8.243925448836237897780838406800, −7.57678477131515501916379363705, −7.39098578178639916165874534573, −6.22011346981919278764205532236, −5.76817100537279140290380582329, −5.54772832288477779237806709428, −4.34187355624120013178779368593, −3.24179831843741899440201963294, −2.90239732560987815559884336063, −1.17608250710157843164325658666, −0.66685239946383197804067101114, 0.66685239946383197804067101114, 1.17608250710157843164325658666, 2.90239732560987815559884336063, 3.24179831843741899440201963294, 4.34187355624120013178779368593, 5.54772832288477779237806709428, 5.76817100537279140290380582329, 6.22011346981919278764205532236, 7.39098578178639916165874534573, 7.57678477131515501916379363705, 8.243925448836237897780838406800, 8.781185927318730634156833235090, 9.038279889944003102409311114258, 9.810059897962084587013298135216, 10.38013495944352052875608792251, 10.66414978980226135028134949260, 11.35968158873318476621115788050, 11.44755393789103818578019655473, 12.20654698366684309537075686440, 12.85479486593872332891213667203

Graph of the $Z$-function along the critical line