Properties

Label 2-147-21.11-c2-0-6
Degree $2$
Conductor $147$
Sign $-0.0243 - 0.999i$
Analytic cond. $4.00545$
Root an. cond. $2.00136$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.03 + 1.75i)2-s + (2.90 + 0.729i)3-s + (4.14 − 7.18i)4-s + (−1.07 + 0.620i)5-s + (−10.1 + 2.88i)6-s + 15.0i·8-s + (7.93 + 4.24i)9-s + (2.17 − 3.77i)10-s + (6.07 + 3.50i)11-s + (17.3 − 17.8i)12-s + 11.6·13-s + (−3.58 + 1.02i)15-s + (−9.79 − 16.9i)16-s + (3.92 + 2.26i)17-s + (−31.5 + 1.01i)18-s + (8.11 + 14.0i)19-s + ⋯
L(s)  = 1  + (−1.51 + 0.876i)2-s + (0.969 + 0.243i)3-s + (1.03 − 1.79i)4-s + (−0.215 + 0.124i)5-s + (−1.68 + 0.480i)6-s + 1.88i·8-s + (0.881 + 0.471i)9-s + (0.217 − 0.377i)10-s + (0.552 + 0.318i)11-s + (1.44 − 1.48i)12-s + 0.895·13-s + (−0.238 + 0.0681i)15-s + (−0.611 − 1.05i)16-s + (0.230 + 0.133i)17-s + (−1.75 + 0.0562i)18-s + (0.427 + 0.739i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0243 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0243 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-0.0243 - 0.999i$
Analytic conductor: \(4.00545\)
Root analytic conductor: \(2.00136\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{147} (116, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :1),\ -0.0243 - 0.999i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.681632 + 0.698436i\)
\(L(\frac12)\) \(\approx\) \(0.681632 + 0.698436i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.90 - 0.729i)T \)
7 \( 1 \)
good2 \( 1 + (3.03 - 1.75i)T + (2 - 3.46i)T^{2} \)
5 \( 1 + (1.07 - 0.620i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (-6.07 - 3.50i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 - 11.6T + 169T^{2} \)
17 \( 1 + (-3.92 - 2.26i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-8.11 - 14.0i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (22.1 - 12.7i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 - 9.49iT - 841T^{2} \)
31 \( 1 + (-14.3 + 24.8i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (-16.5 - 28.6i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + 67.1iT - 1.68e3T^{2} \)
43 \( 1 + 24.1T + 1.84e3T^{2} \)
47 \( 1 + (-28.5 + 16.5i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (-13.1 - 7.59i)T + (1.40e3 + 2.43e3i)T^{2} \)
59 \( 1 + (-80.0 - 46.1i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (28.7 + 49.8i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (7.58 - 13.1i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 70.5iT - 5.04e3T^{2} \)
73 \( 1 + (38.3 - 66.5i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (63.6 + 110. i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + 74.2iT - 6.88e3T^{2} \)
89 \( 1 + (-110. + 63.6i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 - 23.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43206083585152200389102400014, −11.77224687873063806545500655947, −10.45609531651049935945724758408, −9.699458235250808897920114127121, −8.823597632490924568050898291327, −7.965191168367253291773181265412, −7.17246355538900707632607107453, −5.86566321632327335335015673205, −3.78368134920047937076354441321, −1.61884866639324578594267406123, 1.08147609438829891181801080462, 2.61141896556040719506336944532, 3.90413758071394245219257106376, 6.60226150632168251559209907040, 7.88655474141443136828613867877, 8.521333954021696711912626709707, 9.387525993171358443659939199000, 10.26612038508717991605136204227, 11.43186541768896485371544900987, 12.23662527864853677295224371451

Graph of the $Z$-function along the critical line