Properties

Label 8-147e4-1.1-c1e4-0-1
Degree $8$
Conductor $466948881$
Sign $1$
Analytic cond. $1.89835$
Root an. cond. $1.08342$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 3·4-s + 4·5-s + 4·6-s + 2·8-s + 9-s + 8·10-s + 4·11-s + 6·12-s − 16·13-s + 8·15-s + 4·17-s + 2·18-s + 12·20-s + 8·22-s + 4·23-s + 4·24-s + 12·25-s − 32·26-s − 2·27-s − 16·29-s + 16·30-s − 8·31-s − 6·32-s + 8·33-s + 8·34-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.78·5-s + 1.63·6-s + 0.707·8-s + 1/3·9-s + 2.52·10-s + 1.20·11-s + 1.73·12-s − 4.43·13-s + 2.06·15-s + 0.970·17-s + 0.471·18-s + 2.68·20-s + 1.70·22-s + 0.834·23-s + 0.816·24-s + 12/5·25-s − 6.27·26-s − 0.384·27-s − 2.97·29-s + 2.92·30-s − 1.43·31-s − 1.06·32-s + 1.39·33-s + 1.37·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.89835\)
Root analytic conductor: \(1.08342\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.864448153\)
\(L(\frac12)\) \(\approx\) \(4.864448153\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7 \( 1 \)
good2$D_4\times C_2$ \( 1 - p T + T^{2} + p T^{3} - 3 T^{4} + p^{2} T^{5} + p^{2} T^{6} - p^{4} T^{7} + p^{4} T^{8} \)
5$D_4\times C_2$ \( 1 - 4 T + 4 T^{2} - 8 T^{3} + 39 T^{4} - 8 p T^{5} + 4 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_{4}$ \( ( 1 + 8 T + 40 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 4 T - 4 T^{2} + 56 T^{3} - 161 T^{4} + 56 p T^{5} - 4 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^3$ \( 1 - 30 T^{2} + 539 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 4 T - 2 T^{2} + 112 T^{3} - 573 T^{4} + 112 p T^{5} - 2 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 8 T + 66 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 8 T - 6 T^{2} + 64 T^{3} + 1955 T^{4} + 64 p T^{5} - 6 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 - 4 T - 21 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 4 T + 68 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 86 T^{2} + 5187 T^{4} - 86 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 2 T - 49 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 8 T - 62 T^{2} + 64 T^{3} + 8619 T^{4} + 64 p T^{5} - 62 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 16 T + 88 T^{2} - 736 T^{3} + 8887 T^{4} - 736 p T^{5} + 88 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^3$ \( 1 - 102 T^{2} + 5915 T^{4} - 102 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 8 T + 656 T^{3} - 5905 T^{4} + 656 p T^{5} - 8 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 + 16 T + 66 T^{2} + 512 T^{3} + 9635 T^{4} + 512 p T^{5} + 66 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 20 T + 140 T^{2} + 1640 T^{3} + 24079 T^{4} + 1640 p T^{5} + 140 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 + 8 T + 208 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.762587299902956233208971903441, −9.311656244740961829791763617556, −9.078299705054228347854104539727, −9.035351245279866829599741745252, −8.727657081669744181563898226769, −8.136709774759497825112418332544, −7.61294315908616873244959779219, −7.57433717323487988304552963124, −7.32111794603211418314867556170, −6.94583933269027828633817373627, −6.84111233223846220194210314734, −6.55030564562380442777133054919, −5.80647170531078770796941100252, −5.57176317418056938817905304053, −5.56402701137154873391531483432, −5.35204718184660538430895470686, −4.69307314737029500098423310459, −4.57043138743411482840729084786, −4.17526723950096684770236833405, −3.43581297509463027675472343068, −3.11633590144782128325846682748, −3.03684330363718662259261721206, −2.30619245105572922245043296140, −1.98677109128099668675269595975, −1.93060194382655682929945983018, 1.93060194382655682929945983018, 1.98677109128099668675269595975, 2.30619245105572922245043296140, 3.03684330363718662259261721206, 3.11633590144782128325846682748, 3.43581297509463027675472343068, 4.17526723950096684770236833405, 4.57043138743411482840729084786, 4.69307314737029500098423310459, 5.35204718184660538430895470686, 5.56402701137154873391531483432, 5.57176317418056938817905304053, 5.80647170531078770796941100252, 6.55030564562380442777133054919, 6.84111233223846220194210314734, 6.94583933269027828633817373627, 7.32111794603211418314867556170, 7.57433717323487988304552963124, 7.61294315908616873244959779219, 8.136709774759497825112418332544, 8.727657081669744181563898226769, 9.035351245279866829599741745252, 9.078299705054228347854104539727, 9.311656244740961829791763617556, 9.762587299902956233208971903441

Graph of the $Z$-function along the critical line