# Properties

 Degree $2$ Conductor $147$ Sign $0.0725 + 0.997i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $0$

# Learn more about

## Dirichlet series

 L(s)  = 1 + (−0.207 − 0.358i)2-s + (−0.5 + 0.866i)3-s + (0.914 − 1.58i)4-s + (−1.70 − 2.95i)5-s + 0.414·6-s − 1.58·8-s + (−0.499 − 0.866i)9-s + (−0.707 + 1.22i)10-s + (1 − 1.73i)11-s + (0.914 + 1.58i)12-s + 2.58·13-s + 3.41·15-s + (−1.49 − 2.59i)16-s + (1.12 − 1.94i)17-s + (−0.207 + 0.358i)18-s + (1.41 + 2.44i)19-s + ⋯
 L(s)  = 1 + (−0.146 − 0.253i)2-s + (−0.288 + 0.499i)3-s + (0.457 − 0.791i)4-s + (−0.763 − 1.32i)5-s + 0.169·6-s − 0.560·8-s + (−0.166 − 0.288i)9-s + (−0.223 + 0.387i)10-s + (0.301 − 0.522i)11-s + (0.263 + 0.457i)12-s + 0.717·13-s + 0.881·15-s + (−0.374 − 0.649i)16-s + (0.271 − 0.471i)17-s + (−0.0488 + 0.0845i)18-s + (0.324 + 0.561i)19-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$147$$    =    $$3 \cdot 7^{2}$$ Sign: $0.0725 + 0.997i$ Motivic weight: $$1$$ Character: $\chi_{147} (67, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 147,\ (\ :1/2),\ 0.0725 + 0.997i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.661837 - 0.615435i$$ $$L(\frac12)$$ $$\approx$$ $$0.661837 - 0.615435i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1 + (0.5 - 0.866i)T$$
7 $$1$$
good2 $$1 + (0.207 + 0.358i)T + (-1 + 1.73i)T^{2}$$
5 $$1 + (1.70 + 2.95i)T + (-2.5 + 4.33i)T^{2}$$
11 $$1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2}$$
13 $$1 - 2.58T + 13T^{2}$$
17 $$1 + (-1.12 + 1.94i)T + (-8.5 - 14.7i)T^{2}$$
19 $$1 + (-1.41 - 2.44i)T + (-9.5 + 16.4i)T^{2}$$
23 $$1 + (-3.82 - 6.63i)T + (-11.5 + 19.9i)T^{2}$$
29 $$1 + 6.82T + 29T^{2}$$
31 $$1 + (-0.585 + 1.01i)T + (-15.5 - 26.8i)T^{2}$$
37 $$1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2}$$
41 $$1 - 6.24T + 41T^{2}$$
43 $$1 - 5.65T + 43T^{2}$$
47 $$1 + (-1.41 - 2.44i)T + (-23.5 + 40.7i)T^{2}$$
53 $$1 + (-1 + 1.73i)T + (-26.5 - 45.8i)T^{2}$$
59 $$1 + (-0.585 + 1.01i)T + (-29.5 - 51.0i)T^{2}$$
61 $$1 + (6.12 + 10.6i)T + (-30.5 + 52.8i)T^{2}$$
67 $$1 + (-2.82 + 4.89i)T + (-33.5 - 58.0i)T^{2}$$
71 $$1 - 9.31T + 71T^{2}$$
73 $$1 + (6.94 - 12.0i)T + (-36.5 - 63.2i)T^{2}$$
79 $$1 + (6.82 + 11.8i)T + (-39.5 + 68.4i)T^{2}$$
83 $$1 - 7.31T + 83T^{2}$$
89 $$1 + (-7.12 - 12.3i)T + (-44.5 + 77.0i)T^{2}$$
97 $$1 - 2.58T + 97T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−12.57558587618559825438131320110, −11.53942670230990264215599362307, −11.07745381072034168689527576288, −9.623971350396168809469681098609, −8.974662692645919751940224408015, −7.65256890414441409205250270468, −5.97371222579920045515647232408, −5.07039082709885831225379431904, −3.63845703396218886885321011549, −1.07459413278504544289171169784, 2.67266815677563568556195034027, 3.95109035381896103845163269446, 6.15976444849922651813775743876, 7.06756730521689905533640818552, 7.66455013513348093780612950244, 8.897148800663628897534960467783, 10.68946523169918932839344130740, 11.26939569636772156558244310609, 12.20280648265466440454787800514, 13.08894874646774176484905142560