Properties

Label 12-1450e6-1.1-c1e6-0-2
Degree $12$
Conductor $9.294\times 10^{18}$
Sign $1$
Analytic cond. $2.40918\times 10^{6}$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 9·9-s + 10·11-s + 6·16-s + 2·19-s − 6·29-s + 8·31-s − 27·36-s + 34·41-s − 30·44-s + 10·49-s − 32·59-s + 4·61-s − 10·64-s + 16·71-s − 6·76-s + 34·81-s − 22·89-s + 90·99-s + 16·101-s + 12·109-s + 18·116-s + 25·121-s − 24·124-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 3/2·4-s + 3·9-s + 3.01·11-s + 3/2·16-s + 0.458·19-s − 1.11·29-s + 1.43·31-s − 9/2·36-s + 5.30·41-s − 4.52·44-s + 10/7·49-s − 4.16·59-s + 0.512·61-s − 5/4·64-s + 1.89·71-s − 0.688·76-s + 34/9·81-s − 2.33·89-s + 9.04·99-s + 1.59·101-s + 1.14·109-s + 1.67·116-s + 2.27·121-s − 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{12} \cdot 29^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{12} \cdot 29^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 5^{12} \cdot 29^{6}\)
Sign: $1$
Analytic conductor: \(2.40918\times 10^{6}\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 5^{12} \cdot 29^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(8.816328358\)
\(L(\frac12)\) \(\approx\) \(8.816328358\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T^{2} )^{3} \)
5 \( 1 \)
29 \( ( 1 + T )^{6} \)
good3 \( 1 - p^{2} T^{2} + 47 T^{4} - 170 T^{6} + 47 p^{2} T^{8} - p^{6} T^{10} + p^{6} T^{12} \)
7 \( 1 - 10 T^{2} + 163 T^{4} - 964 T^{6} + 163 p^{2} T^{8} - 10 p^{4} T^{10} + p^{6} T^{12} \)
11 \( ( 1 - 5 T + 25 T^{2} - 6 p T^{3} + 25 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 - 62 T^{2} + 1771 T^{4} - 29420 T^{6} + 1771 p^{2} T^{8} - 62 p^{4} T^{10} + p^{6} T^{12} \)
17 \( 1 - 53 T^{2} + 1059 T^{4} - 15182 T^{6} + 1059 p^{2} T^{8} - 53 p^{4} T^{10} + p^{6} T^{12} \)
19 \( ( 1 - T + 53 T^{2} - 36 T^{3} + 53 p T^{4} - p^{2} T^{5} + p^{3} T^{6} )^{2} \)
23 \( 1 - 6 T^{2} + 1235 T^{4} - 2972 T^{6} + 1235 p^{2} T^{8} - 6 p^{4} T^{10} + p^{6} T^{12} \)
31 \( ( 1 - 4 T + 14 T^{2} - 90 T^{3} + 14 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 - 108 T^{2} + 6968 T^{4} - 317870 T^{6} + 6968 p^{2} T^{8} - 108 p^{4} T^{10} + p^{6} T^{12} \)
41 \( ( 1 - 17 T + 195 T^{2} - 1392 T^{3} + 195 p T^{4} - 17 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 130 T^{2} + 10903 T^{4} - 550396 T^{6} + 10903 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 - 108 T^{2} + 6456 T^{4} - 278802 T^{6} + 6456 p^{2} T^{8} - 108 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 - 174 T^{2} + 14907 T^{4} - 899340 T^{6} + 14907 p^{2} T^{8} - 174 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 + 16 T + 238 T^{2} + 1956 T^{3} + 238 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 - 2 T + 76 T^{2} - 98 T^{3} + 76 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 291 T^{2} + 40370 T^{4} - 3383867 T^{6} + 40370 p^{2} T^{8} - 291 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 - 8 T + 179 T^{2} - 868 T^{3} + 179 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 165 T^{2} + 11087 T^{4} - 539570 T^{6} + 11087 p^{2} T^{8} - 165 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 15 T^{2} + 432 T^{3} - 15 p T^{4} + p^{3} T^{6} )^{2} \)
83 \( 1 - 289 T^{2} + 40547 T^{4} - 3847590 T^{6} + 40547 p^{2} T^{8} - 289 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 + 11 T + 3 p T^{2} + 1800 T^{3} + 3 p^{2} T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 322 T^{2} + 57347 T^{4} - 6864372 T^{6} + 57347 p^{2} T^{8} - 322 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.71947617032199971105949779778, −4.66807970390785576666261146898, −4.65488623840619821175676546302, −4.64247614638952412323079602108, −4.23696167485628473193703507935, −4.18465263110509622299301245166, −4.02042723822584557214702077800, −3.97116776640865590787267829501, −3.91777118010830431631033251719, −3.82046933689122017144405633137, −3.39832252943560341707242469156, −3.27432813408693497642219305645, −3.24984839759305665718932998786, −2.79542467900995834716840911017, −2.61555166663799235648672990572, −2.56616887274346185010583350154, −2.11848267915247722735737454602, −2.07318508979689700033427751340, −1.66503505717602899396904290183, −1.44703607625611833275518825717, −1.39737108339364922699609699868, −1.12722578318187148976148965090, −0.899860982485450110058481782859, −0.853153442287446562542221416101, −0.38654334699099946757716324355, 0.38654334699099946757716324355, 0.853153442287446562542221416101, 0.899860982485450110058481782859, 1.12722578318187148976148965090, 1.39737108339364922699609699868, 1.44703607625611833275518825717, 1.66503505717602899396904290183, 2.07318508979689700033427751340, 2.11848267915247722735737454602, 2.56616887274346185010583350154, 2.61555166663799235648672990572, 2.79542467900995834716840911017, 3.24984839759305665718932998786, 3.27432813408693497642219305645, 3.39832252943560341707242469156, 3.82046933689122017144405633137, 3.91777118010830431631033251719, 3.97116776640865590787267829501, 4.02042723822584557214702077800, 4.18465263110509622299301245166, 4.23696167485628473193703507935, 4.64247614638952412323079602108, 4.65488623840619821175676546302, 4.66807970390785576666261146898, 4.71947617032199971105949779778

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.