Properties

Label 8-1450e4-1.1-c1e4-0-3
Degree $8$
Conductor $4.421\times 10^{12}$
Sign $1$
Analytic cond. $17971.3$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 8·11-s + 3·16-s − 16·19-s + 4·29-s − 12·31-s + 16·41-s − 16·44-s + 8·49-s − 44·59-s + 4·61-s − 4·64-s + 16·71-s + 32·76-s − 8·79-s − 18·81-s − 24·89-s + 44·101-s + 8·109-s − 8·116-s − 4·121-s + 24·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 4-s + 2.41·11-s + 3/4·16-s − 3.67·19-s + 0.742·29-s − 2.15·31-s + 2.49·41-s − 2.41·44-s + 8/7·49-s − 5.72·59-s + 0.512·61-s − 1/2·64-s + 1.89·71-s + 3.67·76-s − 0.900·79-s − 2·81-s − 2.54·89-s + 4.37·101-s + 0.766·109-s − 0.742·116-s − 0.363·121-s + 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{8} \cdot 29^{4}\)
Sign: $1$
Analytic conductor: \(17971.3\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{8} \cdot 29^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.197996933\)
\(L(\frac12)\) \(\approx\) \(2.197996933\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
29$C_1$ \( ( 1 - T )^{4} \)
good3$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 8 T^{2} + 18 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
19$D_{4}$ \( ( 1 + 8 T + 48 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
37$D_4\times C_2$ \( 1 - 134 T^{2} + 7203 T^{4} - 134 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 8 T + 44 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 92 T^{2} + 4278 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 138 T^{2} + 9083 T^{4} - 138 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 72 T^{2} + 5378 T^{4} - 72 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 22 T + 233 T^{2} + 22 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 2 T + 117 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 14 T^{2} + 6123 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 8 T + 104 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 112 T^{2} + 6018 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 4 T + 138 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 12 T + 208 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.71278389644999100581948818429, −6.51261255967793713650543328803, −6.29222070660684011500727322197, −6.25297418006538971067670274510, −5.93906653840011045964252745883, −5.87900272379343897289268249127, −5.38659916503155576644925348815, −5.37360136234552349302611584651, −5.01350637095519203066564162002, −4.41697287223957078050022296075, −4.40907723764914993691765018579, −4.39403923185426901881049264464, −4.27614888635459448993043043867, −3.92776772645798855927164009089, −3.77535928326288717282233463683, −3.41128864377746687933567847092, −3.02016948314528278590651837676, −2.96375911662350427182263275907, −2.45422432814042519338539062846, −2.16217307240048436926906082695, −1.72554745935703660930138230652, −1.62013578213626474716980281381, −1.38491252317642979251150679409, −0.51444890166230282369496532720, −0.49700477550509189015436159945, 0.49700477550509189015436159945, 0.51444890166230282369496532720, 1.38491252317642979251150679409, 1.62013578213626474716980281381, 1.72554745935703660930138230652, 2.16217307240048436926906082695, 2.45422432814042519338539062846, 2.96375911662350427182263275907, 3.02016948314528278590651837676, 3.41128864377746687933567847092, 3.77535928326288717282233463683, 3.92776772645798855927164009089, 4.27614888635459448993043043867, 4.39403923185426901881049264464, 4.40907723764914993691765018579, 4.41697287223957078050022296075, 5.01350637095519203066564162002, 5.37360136234552349302611584651, 5.38659916503155576644925348815, 5.87900272379343897289268249127, 5.93906653840011045964252745883, 6.25297418006538971067670274510, 6.29222070660684011500727322197, 6.51261255967793713650543328803, 6.71278389644999100581948818429

Graph of the $Z$-function along the critical line