Properties

Label 2-38e2-1.1-c3-0-2
Degree $2$
Conductor $1444$
Sign $1$
Analytic cond. $85.1987$
Root an. cond. $9.23031$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.372·3-s − 16.8·5-s − 3.51·7-s − 26.8·9-s − 21.1·11-s − 14.0·13-s + 6.27·15-s − 17.2·17-s + 1.30·21-s − 171.·23-s + 159.·25-s + 20.0·27-s − 264.·29-s − 185.·31-s + 7.86·33-s + 59.1·35-s − 212.·37-s + 5.24·39-s + 157.·41-s − 258.·43-s + 452.·45-s − 293.·47-s − 330.·49-s + 6.41·51-s − 215.·53-s + 356.·55-s + 537.·59-s + ⋯
L(s)  = 1  − 0.0716·3-s − 1.50·5-s − 0.189·7-s − 0.994·9-s − 0.579·11-s − 0.300·13-s + 0.108·15-s − 0.245·17-s + 0.0135·21-s − 1.55·23-s + 1.27·25-s + 0.142·27-s − 1.69·29-s − 1.07·31-s + 0.0415·33-s + 0.285·35-s − 0.946·37-s + 0.0215·39-s + 0.598·41-s − 0.916·43-s + 1.50·45-s − 0.911·47-s − 0.964·49-s + 0.0176·51-s − 0.559·53-s + 0.873·55-s + 1.18·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1444\)    =    \(2^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(85.1987\)
Root analytic conductor: \(9.23031\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1444,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.05079157384\)
\(L(\frac12)\) \(\approx\) \(0.05079157384\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 0.372T + 27T^{2} \)
5 \( 1 + 16.8T + 125T^{2} \)
7 \( 1 + 3.51T + 343T^{2} \)
11 \( 1 + 21.1T + 1.33e3T^{2} \)
13 \( 1 + 14.0T + 2.19e3T^{2} \)
17 \( 1 + 17.2T + 4.91e3T^{2} \)
23 \( 1 + 171.T + 1.21e4T^{2} \)
29 \( 1 + 264.T + 2.43e4T^{2} \)
31 \( 1 + 185.T + 2.97e4T^{2} \)
37 \( 1 + 212.T + 5.06e4T^{2} \)
41 \( 1 - 157.T + 6.89e4T^{2} \)
43 \( 1 + 258.T + 7.95e4T^{2} \)
47 \( 1 + 293.T + 1.03e5T^{2} \)
53 \( 1 + 215.T + 1.48e5T^{2} \)
59 \( 1 - 537.T + 2.05e5T^{2} \)
61 \( 1 + 280.T + 2.26e5T^{2} \)
67 \( 1 + 147.T + 3.00e5T^{2} \)
71 \( 1 - 913.T + 3.57e5T^{2} \)
73 \( 1 + 678.T + 3.89e5T^{2} \)
79 \( 1 - 608.T + 4.93e5T^{2} \)
83 \( 1 - 282.T + 5.71e5T^{2} \)
89 \( 1 - 214.T + 7.04e5T^{2} \)
97 \( 1 + 1.67e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.029167782124646585598271569683, −8.149269680125648424986675109164, −7.75964391961433642625284295767, −6.85400887412351911434309090761, −5.79519800647513560514533431636, −4.96883290582949944477452912692, −3.88039220595962100588609378968, −3.27278798802038271440682772352, −2.03418730314643836955228788121, −0.10393854461743198447016427216, 0.10393854461743198447016427216, 2.03418730314643836955228788121, 3.27278798802038271440682772352, 3.88039220595962100588609378968, 4.96883290582949944477452912692, 5.79519800647513560514533431636, 6.85400887412351911434309090761, 7.75964391961433642625284295767, 8.149269680125648424986675109164, 9.029167782124646585598271569683

Graph of the $Z$-function along the critical line