Properties

Label 4-38e4-1.1-c3e2-0-0
Degree $4$
Conductor $2085136$
Sign $1$
Analytic cond. $7258.82$
Root an. cond. $9.23031$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s − 5·5-s − 30·7-s − 27·9-s − 71·11-s + 35·13-s − 25·15-s − 150·21-s − 5·23-s − 25·25-s − 260·27-s − 155·29-s + 88·31-s − 355·33-s + 150·35-s − 380·37-s + 175·39-s + 142·41-s + 155·43-s + 135·45-s − 455·47-s + 121·49-s + 275·53-s + 355·55-s + 873·59-s + 445·61-s + 810·63-s + ⋯
L(s)  = 1  + 0.962·3-s − 0.447·5-s − 1.61·7-s − 9-s − 1.94·11-s + 0.746·13-s − 0.430·15-s − 1.55·21-s − 0.0453·23-s − 1/5·25-s − 1.85·27-s − 0.992·29-s + 0.509·31-s − 1.87·33-s + 0.724·35-s − 1.68·37-s + 0.718·39-s + 0.540·41-s + 0.549·43-s + 0.447·45-s − 1.41·47-s + 0.352·49-s + 0.712·53-s + 0.870·55-s + 1.92·59-s + 0.934·61-s + 1.61·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2085136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2085136 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2085136\)    =    \(2^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(7258.82\)
Root analytic conductor: \(9.23031\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2085136,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1582052701\)
\(L(\frac12)\) \(\approx\) \(0.1582052701\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3$D_{4}$ \( 1 - 5 T + 52 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + p T + 2 p^{2} T^{2} + p^{4} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 30 T + 779 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 71 T + 3716 T^{2} + 71 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 35 T + 3702 T^{2} - 35 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 9529 T^{2} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 5 T - 4378 T^{2} + 5 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 155 T + 19928 T^{2} + 155 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 88 T + 8718 T^{2} - 88 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 380 T + 136878 T^{2} + 380 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 142 T + 135458 T^{2} - 142 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 155 T + 52086 T^{2} - 155 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 455 T + 255038 T^{2} + 455 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 275 T + 191846 T^{2} - 275 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 873 T + 591184 T^{2} - 873 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 445 T + 250812 T^{2} - 445 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 645 T + 674834 T^{2} + 645 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1712 T + 1445258 T^{2} - 1712 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 990 T + 989267 T^{2} + 990 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 1274 T + 1391022 T^{2} - 1274 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 90 T + 1038382 T^{2} + 90 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 888 T + 1554274 T^{2} - 888 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 710 T + 220818 T^{2} + 710 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.044677785179141828645965037369, −9.029167782124646585598271569683, −8.609456163258963838504126165994, −8.149269680125648424986675109164, −7.75964391961433642625284295767, −7.64863563215340404060239761439, −6.85400887412351911434309090761, −6.63801105897354697924467317540, −5.94835414791555536078988212849, −5.79519800647513560514533431636, −5.13128106272326251727369212943, −4.96883290582949944477452912692, −3.88039220595962100588609378968, −3.66625614898023446721353897152, −3.27278798802038271440682772352, −2.88889493157808403279340589222, −2.34834151893248409147297584307, −2.03418730314643836955228788121, −0.811800537377448312204552249538, −0.10393854461743198447016427216, 0.10393854461743198447016427216, 0.811800537377448312204552249538, 2.03418730314643836955228788121, 2.34834151893248409147297584307, 2.88889493157808403279340589222, 3.27278798802038271440682772352, 3.66625614898023446721353897152, 3.88039220595962100588609378968, 4.96883290582949944477452912692, 5.13128106272326251727369212943, 5.79519800647513560514533431636, 5.94835414791555536078988212849, 6.63801105897354697924467317540, 6.85400887412351911434309090761, 7.64863563215340404060239761439, 7.75964391961433642625284295767, 8.149269680125648424986675109164, 8.609456163258963838504126165994, 9.029167782124646585598271569683, 9.044677785179141828645965037369

Graph of the $Z$-function along the critical line