Properties

Label 2-38e2-1.1-c1-0-24
Degree $2$
Conductor $1444$
Sign $-1$
Analytic cond. $11.5303$
Root an. cond. $3.39564$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·9-s − 4·11-s + 13-s − 15-s + 3·17-s + 5·23-s − 4·25-s − 5·27-s − 7·29-s − 4·31-s − 4·33-s − 10·37-s + 39-s + 5·41-s − 5·43-s + 2·45-s − 7·47-s − 7·49-s + 3·51-s − 11·53-s + 4·55-s − 3·59-s + 11·61-s − 65-s + 3·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 2/3·9-s − 1.20·11-s + 0.277·13-s − 0.258·15-s + 0.727·17-s + 1.04·23-s − 4/5·25-s − 0.962·27-s − 1.29·29-s − 0.718·31-s − 0.696·33-s − 1.64·37-s + 0.160·39-s + 0.780·41-s − 0.762·43-s + 0.298·45-s − 1.02·47-s − 49-s + 0.420·51-s − 1.51·53-s + 0.539·55-s − 0.390·59-s + 1.40·61-s − 0.124·65-s + 0.366·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1444\)    =    \(2^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(11.5303\)
Root analytic conductor: \(3.39564\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1444,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 11 T + p T^{2} \) 1.71.l
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.105008113833057026857036839363, −8.100558399299494778884078521035, −7.84988968865075234633713051253, −6.83040517436078033519471877597, −5.63050469033946262906588250604, −5.06364783637482652474882917253, −3.66113815902587852745351634340, −3.09017486549877239651441604378, −1.89788337754159354249824502826, 0, 1.89788337754159354249824502826, 3.09017486549877239651441604378, 3.66113815902587852745351634340, 5.06364783637482652474882917253, 5.63050469033946262906588250604, 6.83040517436078033519471877597, 7.84988968865075234633713051253, 8.100558399299494778884078521035, 9.105008113833057026857036839363

Graph of the $Z$-function along the critical line