Properties

Label 8-1440e4-1.1-c1e4-0-6
Degree $8$
Conductor $4.300\times 10^{12}$
Sign $1$
Analytic cond. $17480.6$
Root an. cond. $3.39093$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·25-s + 16·29-s − 40·41-s + 20·49-s + 40·61-s + 24·89-s − 48·101-s − 40·109-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 2·25-s + 2.97·29-s − 6.24·41-s + 20/7·49-s + 5.12·61-s + 2.54·89-s − 4.77·101-s − 3.83·109-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(17480.6\)
Root analytic conductor: \(3.39093\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9325539793\)
\(L(\frac12)\) \(\approx\) \(0.9325539793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 62 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 66 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 78 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 126 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.81862730369171557358935840590, −6.67009507343241820872957833098, −6.56895241350178818657971136511, −6.34422203322125044833580827475, −5.66412235980262410291366344682, −5.65262436587696134203888218539, −5.50355942463533143707158833452, −5.27728529715644030126361410230, −5.22344490328304362191872505335, −4.80623187152615436896213555662, −4.57501290811589207758319475381, −4.24156084630314207135651686601, −4.17181352203651849841009685803, −3.69317192137638188340017732954, −3.59093306487080246131681157670, −3.57460210232014310424019071743, −2.93279612884887630196428836064, −2.90055613177268380447918844684, −2.46359355507251976451366308267, −2.19099042305534222551153242469, −1.99594864537663159439266731873, −1.63197097223259726290013129297, −1.09406731927388115419791006706, −0.967868677771219234668746747901, −0.19907886645495187645100147373, 0.19907886645495187645100147373, 0.967868677771219234668746747901, 1.09406731927388115419791006706, 1.63197097223259726290013129297, 1.99594864537663159439266731873, 2.19099042305534222551153242469, 2.46359355507251976451366308267, 2.90055613177268380447918844684, 2.93279612884887630196428836064, 3.57460210232014310424019071743, 3.59093306487080246131681157670, 3.69317192137638188340017732954, 4.17181352203651849841009685803, 4.24156084630314207135651686601, 4.57501290811589207758319475381, 4.80623187152615436896213555662, 5.22344490328304362191872505335, 5.27728529715644030126361410230, 5.50355942463533143707158833452, 5.65262436587696134203888218539, 5.66412235980262410291366344682, 6.34422203322125044833580827475, 6.56895241350178818657971136511, 6.67009507343241820872957833098, 6.81862730369171557358935840590

Graph of the $Z$-function along the critical line