Properties

Label 4-1440e2-1.1-c0e2-0-1
Degree $4$
Conductor $2073600$
Sign $1$
Analytic cond. $0.516463$
Root an. cond. $0.847734$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·13-s + 2·17-s + 3·25-s + 2·37-s + 4·41-s − 2·53-s − 4·65-s − 2·73-s − 4·85-s − 2·97-s − 2·113-s − 2·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 2·5-s + 2·13-s + 2·17-s + 3·25-s + 2·37-s + 4·41-s − 2·53-s − 4·65-s − 2·73-s − 4·85-s − 2·97-s − 2·113-s − 2·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2073600\)    =    \(2^{10} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.516463\)
Root analytic conductor: \(0.847734\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2073600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9589052527\)
\(L(\frac12)\) \(\approx\) \(0.9589052527\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$C_2^2$ \( 1 + T^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2^2$ \( 1 + T^{4} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
41$C_1$ \( ( 1 - T )^{4} \)
43$C_2^2$ \( 1 + T^{4} \)
47$C_2^2$ \( 1 + T^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2^2$ \( 1 + T^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2^2$ \( 1 + T^{4} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.789834312403162101504104368777, −9.514494561939992989969555017758, −9.027056338595591550620069265655, −8.684468994026878119935643016065, −8.075038895783426469924256153369, −7.970727653561362937937201211123, −7.61931739906611022014648553378, −7.39065439420921194272443620685, −6.64238716791755925430759070677, −6.28416467723877955480286354843, −5.72266021236676304890805641597, −5.59502603952297633276154014009, −4.58575111085215552545235867765, −4.43913993598052819559930810697, −3.77350033148560231280538830435, −3.72863568514383898177399059257, −2.86918491009519607751869513752, −2.79545552444716794051680904709, −1.22250185924146832506956428193, −1.05868578085971676079954382992, 1.05868578085971676079954382992, 1.22250185924146832506956428193, 2.79545552444716794051680904709, 2.86918491009519607751869513752, 3.72863568514383898177399059257, 3.77350033148560231280538830435, 4.43913993598052819559930810697, 4.58575111085215552545235867765, 5.59502603952297633276154014009, 5.72266021236676304890805641597, 6.28416467723877955480286354843, 6.64238716791755925430759070677, 7.39065439420921194272443620685, 7.61931739906611022014648553378, 7.970727653561362937937201211123, 8.075038895783426469924256153369, 8.684468994026878119935643016065, 9.027056338595591550620069265655, 9.514494561939992989969555017758, 9.789834312403162101504104368777

Graph of the $Z$-function along the critical line