L(s) = 1 | + (1.05 + 2.62i)2-s + (−5.78 + 5.52i)4-s + (11.8 + 11.8i)5-s − 12.7·7-s + (−20.5 − 9.39i)8-s + (−18.6 + 43.5i)10-s + (−15.5 + 15.5i)11-s + (42.1 + 42.1i)13-s + (−13.4 − 33.4i)14-s + (3.04 − 63.9i)16-s − 76.6i·17-s + (−108. + 108. i)19-s + (−134. − 3.18i)20-s + (−57.1 − 24.4i)22-s − 52.0i·23-s + ⋯ |
L(s) = 1 | + (0.371 + 0.928i)2-s + (−0.723 + 0.690i)4-s + (1.05 + 1.05i)5-s − 0.688·7-s + (−0.909 − 0.415i)8-s + (−0.589 + 1.37i)10-s + (−0.425 + 0.425i)11-s + (0.900 + 0.900i)13-s + (−0.255 − 0.639i)14-s + (0.0475 − 0.998i)16-s − 1.09i·17-s + (−1.31 + 1.31i)19-s + (−1.49 − 0.0356i)20-s + (−0.553 − 0.237i)22-s − 0.471i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.963 - 0.267i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.963 - 0.267i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.232928 + 1.71286i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.232928 + 1.71286i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.05 - 2.62i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-11.8 - 11.8i)T + 125iT^{2} \) |
| 7 | \( 1 + 12.7T + 343T^{2} \) |
| 11 | \( 1 + (15.5 - 15.5i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-42.1 - 42.1i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 76.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (108. - 108. i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 52.0iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (89.7 - 89.7i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 12.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-115. + 115. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 307.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-342. - 342. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 357.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-450. - 450. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-395. + 395. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-220. - 220. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (243. - 243. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 414. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 91.5iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 236. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (204. + 204. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 688.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 968.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32927197628525418756062856853, −12.48329976676314721109758246373, −10.93563960859758208194123864008, −9.845527055990038840172671292848, −8.965826053956115469843633501923, −7.43736927917728241104659892987, −6.45617095028589669745066918304, −5.81946032664328799819726993464, −4.08752715684013821090373274932, −2.56518886796934323412651161926,
0.75936014432660951842610355686, 2.36812613103534826304277681731, 3.98080082285546105621645995655, 5.44864455512322673374590710559, 6.14169319310472573519596827883, 8.462990642918642179690157351083, 9.178153073334265846637760027304, 10.24568446318673808715979991371, 11.02877654978315746546250652031, 12.53383318744617815664952833186