L(s) = 1 | + (−2.64 + 1.40i)3-s + (−3.01 − 5.22i)5-s + (10.2 + 5.90i)7-s + (5.04 − 7.45i)9-s + (5.28 + 3.05i)11-s + (7.44 + 12.9i)13-s + (15.3 + 9.60i)15-s + 26.6·17-s − 9.45i·19-s + (−35.4 − 1.25i)21-s + (−17.2 + 9.96i)23-s + (−5.70 + 9.88i)25-s + (−2.86 + 26.8i)27-s + (22.3 − 38.6i)29-s + (5.42 − 3.13i)31-s + ⋯ |
L(s) = 1 | + (−0.883 + 0.469i)3-s + (−0.603 − 1.04i)5-s + (1.46 + 0.844i)7-s + (0.560 − 0.828i)9-s + (0.480 + 0.277i)11-s + (0.572 + 0.992i)13-s + (1.02 + 0.640i)15-s + 1.57·17-s − 0.497i·19-s + (−1.68 − 0.0597i)21-s + (−0.750 + 0.433i)23-s + (−0.228 + 0.395i)25-s + (−0.106 + 0.994i)27-s + (0.769 − 1.33i)29-s + (0.174 − 0.101i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.961 - 0.274i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.961 - 0.274i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.18924 + 0.166520i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18924 + 0.166520i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.64 - 1.40i)T \) |
good | 5 | \( 1 + (3.01 + 5.22i)T + (-12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (-10.2 - 5.90i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (-5.28 - 3.05i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-7.44 - 12.9i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 26.6T + 289T^{2} \) |
| 19 | \( 1 + 9.45iT - 361T^{2} \) |
| 23 | \( 1 + (17.2 - 9.96i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-22.3 + 38.6i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-5.42 + 3.13i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 6.65T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-8.82 - 15.2i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-20.2 - 11.7i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (36.4 + 21.0i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 51.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + (32.9 - 18.9i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (45.3 - 78.6i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-53.4 + 30.8i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 39.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 35.0T + 5.32e3T^{2} \) |
| 79 | \( 1 + (77.9 + 45.0i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-102. - 59.0i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 14.4T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-67.5 + 117. i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.37710353599033587310446254629, −11.84034443494861347806719901667, −11.29535166996401693791930532170, −9.775288689755512118886476469442, −8.747353500773178456461133305740, −7.79624454824661610368919736938, −6.06105153963517361773823616850, −4.95579028941721166669064100603, −4.18049605068638595755532732686, −1.33410317274169736428023879096,
1.20968348956690046311347690650, 3.57716111407378882740140136180, 5.07253490157101743692584781237, 6.37096570977863695465809638969, 7.59191992224144548399054985124, 8.063533763925235125157699197932, 10.37369682082433646958955655313, 10.80963940141530266551179191178, 11.66340254825863636577302124687, 12.55962627535398259700202884561