# Properties

 Degree $32$ Conductor $3.418\times 10^{34}$ Sign $1$ Motivic weight $2$ Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 + 6·4-s + 4·8-s − 32·11-s + 26·16-s − 32·19-s + 128·23-s − 32·29-s − 8·32-s − 96·37-s + 160·43-s − 192·44-s − 336·49-s + 160·53-s + 128·59-s − 32·61-s + 24·64-s + 320·67-s − 512·71-s − 192·76-s + 160·83-s − 128·88-s + 768·92-s + 384·103-s − 512·109-s + 224·113-s − 192·116-s + 512·121-s + ⋯
 L(s)  = 1 + 3/2·4-s + 1/2·8-s − 2.90·11-s + 13/8·16-s − 1.68·19-s + 5.56·23-s − 1.10·29-s − 1/4·32-s − 2.59·37-s + 3.72·43-s − 4.36·44-s − 6.85·49-s + 3.01·53-s + 2.16·59-s − 0.524·61-s + 3/8·64-s + 4.77·67-s − 7.21·71-s − 2.52·76-s + 1.92·83-s − 1.45·88-s + 8.34·92-s + 3.72·103-s − 4.69·109-s + 1.98·113-s − 1.65·116-s + 4.23·121-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{64} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{64} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s+1)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$32$$ Conductor: $$2^{64} \cdot 3^{32}$$ Sign: $1$ Motivic weight: $$2$$ Character: induced by $\chi_{144} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(32,\ 2^{64} \cdot 3^{32} ,\ ( \ : [1]^{16} ),\ 1 )$$

## Particular Values

 $$L(\frac{3}{2})$$ $$\approx$$ $$0.847012$$ $$L(\frac12)$$ $$\approx$$ $$0.847012$$ $$L(2)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 - 3 p T^{2} - p^{2} T^{3} + 5 p T^{4} + 7 p^{3} T^{5} + 11 p^{3} T^{6} - p^{7} T^{7} - 31 p^{4} T^{8} - p^{9} T^{9} + 11 p^{7} T^{10} + 7 p^{9} T^{11} + 5 p^{9} T^{12} - p^{12} T^{13} - 3 p^{13} T^{14} + p^{16} T^{16}$$
3 $$1$$
good5 $$1 - 32 T^{3} - 344 T^{4} - 5664 T^{5} + 512 T^{6} - 5824 p^{2} T^{7} + 223452 T^{8} + 2255168 T^{9} + 20875776 T^{10} + 13456544 p T^{11} + 753060504 T^{12} - 1881828576 T^{13} + 2740220928 T^{14} - 75471830656 T^{15} - 399298967994 T^{16} - 75471830656 p^{2} T^{17} + 2740220928 p^{4} T^{18} - 1881828576 p^{6} T^{19} + 753060504 p^{8} T^{20} + 13456544 p^{11} T^{21} + 20875776 p^{12} T^{22} + 2255168 p^{14} T^{23} + 223452 p^{16} T^{24} - 5824 p^{20} T^{25} + 512 p^{20} T^{26} - 5664 p^{22} T^{27} - 344 p^{24} T^{28} - 32 p^{26} T^{29} + p^{32} T^{32}$$
7 $$( 1 + 24 p T^{2} - 64 p T^{3} + 15076 T^{4} - 56512 T^{5} + 1070392 T^{6} - 3649664 T^{7} + 60103046 T^{8} - 3649664 p^{2} T^{9} + 1070392 p^{4} T^{10} - 56512 p^{6} T^{11} + 15076 p^{8} T^{12} - 64 p^{11} T^{13} + 24 p^{13} T^{14} + p^{16} T^{16} )^{2}$$
11 $$1 + 32 T + 512 T^{2} + 8480 T^{3} + 137032 T^{4} + 1636576 T^{5} + 18165248 T^{6} + 219655136 T^{7} + 2263228700 T^{8} + 21867108000 T^{9} + 253620152832 T^{10} + 2916953293728 T^{11} + 33797606438392 T^{12} + 39251678022944 p T^{13} + 5293166227138048 T^{14} + 61910274521995104 T^{15} + 703855220885889990 T^{16} + 61910274521995104 p^{2} T^{17} + 5293166227138048 p^{4} T^{18} + 39251678022944 p^{7} T^{19} + 33797606438392 p^{8} T^{20} + 2916953293728 p^{10} T^{21} + 253620152832 p^{12} T^{22} + 21867108000 p^{14} T^{23} + 2263228700 p^{16} T^{24} + 219655136 p^{18} T^{25} + 18165248 p^{20} T^{26} + 1636576 p^{22} T^{27} + 137032 p^{24} T^{28} + 8480 p^{26} T^{29} + 512 p^{28} T^{30} + 32 p^{30} T^{31} + p^{32} T^{32}$$
13 $$1 + 3200 T^{3} + 7608 T^{4} + 95360 T^{5} + 5120000 T^{6} + 68335872 T^{7} + 2004669468 T^{8} + 7270355200 T^{9} + 184268595200 T^{10} + 4889456013184 T^{11} + 5354592144136 T^{12} + 669839496880000 T^{13} + 7008632866619392 T^{14} + 70586941744778752 T^{15} + 2398056097119178950 T^{16} + 70586941744778752 p^{2} T^{17} + 7008632866619392 p^{4} T^{18} + 669839496880000 p^{6} T^{19} + 5354592144136 p^{8} T^{20} + 4889456013184 p^{10} T^{21} + 184268595200 p^{12} T^{22} + 7270355200 p^{14} T^{23} + 2004669468 p^{16} T^{24} + 68335872 p^{18} T^{25} + 5120000 p^{20} T^{26} + 95360 p^{22} T^{27} + 7608 p^{24} T^{28} + 3200 p^{26} T^{29} + p^{32} T^{32}$$
17 $$( 1 + 968 T^{2} + 2944 T^{3} + 516540 T^{4} + 188800 p T^{5} + 201700088 T^{6} + 1543904000 T^{7} + 63894476806 T^{8} + 1543904000 p^{2} T^{9} + 201700088 p^{4} T^{10} + 188800 p^{7} T^{11} + 516540 p^{8} T^{12} + 2944 p^{10} T^{13} + 968 p^{12} T^{14} + p^{16} T^{16} )^{2}$$
19 $$1 + 32 T + 512 T^{2} - 2656 T^{3} - 523448 T^{4} - 8424608 T^{5} + 1945088 T^{6} + 4454446304 T^{7} + 107916937244 T^{8} - 703649376 T^{9} - 30601835632128 T^{10} - 698985761087712 T^{11} + 998616856187896 T^{12} + 253693358084547040 T^{13} + 3161998119961945600 T^{14} - 30474951661580761248 T^{15} -$$$$19\!\cdots\!42$$$$T^{16} - 30474951661580761248 p^{2} T^{17} + 3161998119961945600 p^{4} T^{18} + 253693358084547040 p^{6} T^{19} + 998616856187896 p^{8} T^{20} - 698985761087712 p^{10} T^{21} - 30601835632128 p^{12} T^{22} - 703649376 p^{14} T^{23} + 107916937244 p^{16} T^{24} + 4454446304 p^{18} T^{25} + 1945088 p^{20} T^{26} - 8424608 p^{22} T^{27} - 523448 p^{24} T^{28} - 2656 p^{26} T^{29} + 512 p^{28} T^{30} + 32 p^{30} T^{31} + p^{32} T^{32}$$
23 $$( 1 - 64 T + 152 p T^{2} - 127936 T^{3} + 4410332 T^{4} - 130001728 T^{5} + 3673719192 T^{6} - 94049622208 T^{7} + 2261818535238 T^{8} - 94049622208 p^{2} T^{9} + 3673719192 p^{4} T^{10} - 130001728 p^{6} T^{11} + 4410332 p^{8} T^{12} - 127936 p^{10} T^{13} + 152 p^{13} T^{14} - 64 p^{14} T^{15} + p^{16} T^{16} )^{2}$$
29 $$1 + 32 T + 512 T^{2} - 18368 T^{3} - 1552984 T^{4} - 20596992 T^{5} + 304715776 T^{6} + 25469097376 T^{7} + 491466517980 T^{8} - 9791032230816 T^{9} - 347423504794624 T^{10} - 2649303176415616 T^{11} + 694517140133881240 T^{12} + 20658732330776531008 T^{13} +$$$$19\!\cdots\!28$$$$T^{14} -$$$$11\!\cdots\!40$$$$T^{15} -$$$$82\!\cdots\!10$$$$T^{16} -$$$$11\!\cdots\!40$$$$p^{2} T^{17} +$$$$19\!\cdots\!28$$$$p^{4} T^{18} + 20658732330776531008 p^{6} T^{19} + 694517140133881240 p^{8} T^{20} - 2649303176415616 p^{10} T^{21} - 347423504794624 p^{12} T^{22} - 9791032230816 p^{14} T^{23} + 491466517980 p^{16} T^{24} + 25469097376 p^{18} T^{25} + 304715776 p^{20} T^{26} - 20596992 p^{22} T^{27} - 1552984 p^{24} T^{28} - 18368 p^{26} T^{29} + 512 p^{28} T^{30} + 32 p^{30} T^{31} + p^{32} T^{32}$$
31 $$1 - 7312 T^{2} + 29025544 T^{4} - 80335806576 T^{6} + 171125889681052 T^{8} - 295006946315669072 T^{10} + 13661536407528780744 p T^{12} -$$$$51\!\cdots\!00$$$$T^{14} +$$$$53\!\cdots\!38$$$$T^{16} -$$$$51\!\cdots\!00$$$$p^{4} T^{18} + 13661536407528780744 p^{9} T^{20} - 295006946315669072 p^{12} T^{22} + 171125889681052 p^{16} T^{24} - 80335806576 p^{20} T^{26} + 29025544 p^{24} T^{28} - 7312 p^{28} T^{30} + p^{32} T^{32}$$
37 $$1 + 96 T + 4608 T^{2} + 145952 T^{3} + 4040888 T^{4} + 217733344 T^{5} + 12932982272 T^{6} + 602883756192 T^{7} + 21839639792924 T^{8} + 655265530977504 T^{9} + 21703692469355008 T^{10} + 22032204217953568 p T^{11} + 35433653736114978312 T^{12} +$$$$14\!\cdots\!40$$$$T^{13} +$$$$50\!\cdots\!52$$$$T^{14} +$$$$14\!\cdots\!84$$$$T^{15} +$$$$43\!\cdots\!90$$$$T^{16} +$$$$14\!\cdots\!84$$$$p^{2} T^{17} +$$$$50\!\cdots\!52$$$$p^{4} T^{18} +$$$$14\!\cdots\!40$$$$p^{6} T^{19} + 35433653736114978312 p^{8} T^{20} + 22032204217953568 p^{11} T^{21} + 21703692469355008 p^{12} T^{22} + 655265530977504 p^{14} T^{23} + 21839639792924 p^{16} T^{24} + 602883756192 p^{18} T^{25} + 12932982272 p^{20} T^{26} + 217733344 p^{22} T^{27} + 4040888 p^{24} T^{28} + 145952 p^{26} T^{29} + 4608 p^{28} T^{30} + 96 p^{30} T^{31} + p^{32} T^{32}$$
41 $$1 - 13840 T^{2} + 102706104 T^{4} - 524939980080 T^{6} + 2044068651261084 T^{8} - 6376104819902485008 T^{10} +$$$$16\!\cdots\!68$$$$T^{12} -$$$$35\!\cdots\!72$$$$T^{14} +$$$$64\!\cdots\!06$$$$T^{16} -$$$$35\!\cdots\!72$$$$p^{4} T^{18} +$$$$16\!\cdots\!68$$$$p^{8} T^{20} - 6376104819902485008 p^{12} T^{22} + 2044068651261084 p^{16} T^{24} - 524939980080 p^{20} T^{26} + 102706104 p^{24} T^{28} - 13840 p^{28} T^{30} + p^{32} T^{32}$$
43 $$1 - 160 T + 12800 T^{2} - 978464 T^{3} + 71106632 T^{4} - 3813053664 T^{5} + 178619596288 T^{6} - 8719368905312 T^{7} + 336417491247900 T^{8} - 217203197196384 p T^{9} + 288453906337733120 T^{10} - 7137460469658328480 T^{11} -$$$$12\!\cdots\!76$$$$T^{12} +$$$$13\!\cdots\!84$$$$T^{13} -$$$$44\!\cdots\!20$$$$T^{14} +$$$$28\!\cdots\!76$$$$T^{15} -$$$$17\!\cdots\!30$$$$T^{16} +$$$$28\!\cdots\!76$$$$p^{2} T^{17} -$$$$44\!\cdots\!20$$$$p^{4} T^{18} +$$$$13\!\cdots\!84$$$$p^{6} T^{19} -$$$$12\!\cdots\!76$$$$p^{8} T^{20} - 7137460469658328480 p^{10} T^{21} + 288453906337733120 p^{12} T^{22} - 217203197196384 p^{15} T^{23} + 336417491247900 p^{16} T^{24} - 8719368905312 p^{18} T^{25} + 178619596288 p^{20} T^{26} - 3813053664 p^{22} T^{27} + 71106632 p^{24} T^{28} - 978464 p^{26} T^{29} + 12800 p^{28} T^{30} - 160 p^{30} T^{31} + p^{32} T^{32}$$
47 $$1 - 24144 T^{2} + 280869112 T^{4} - 2097883923184 T^{6} + 11327375509374492 T^{8} - 47271044690493269328 T^{10} +$$$$15\!\cdots\!16$$$$T^{12} -$$$$44\!\cdots\!04$$$$T^{14} +$$$$10\!\cdots\!58$$$$T^{16} -$$$$44\!\cdots\!04$$$$p^{4} T^{18} +$$$$15\!\cdots\!16$$$$p^{8} T^{20} - 47271044690493269328 p^{12} T^{22} + 11327375509374492 p^{16} T^{24} - 2097883923184 p^{20} T^{26} + 280869112 p^{24} T^{28} - 24144 p^{28} T^{30} + p^{32} T^{32}$$
53 $$1 - 160 T + 12800 T^{2} - 602944 T^{3} + 74504 p T^{4} + 1481707264 T^{5} - 105845942272 T^{6} + 3791430241760 T^{7} + 34861972067036 T^{8} - 14471440004155872 T^{9} + 1098860393015073792 T^{10} - 54880211634179791488 T^{11} +$$$$13\!\cdots\!12$$$$T^{12} +$$$$17\!\cdots\!00$$$$T^{13} -$$$$18\!\cdots\!48$$$$T^{14} -$$$$16\!\cdots\!08$$$$T^{15} +$$$$51\!\cdots\!54$$$$T^{16} -$$$$16\!\cdots\!08$$$$p^{2} T^{17} -$$$$18\!\cdots\!48$$$$p^{4} T^{18} +$$$$17\!\cdots\!00$$$$p^{6} T^{19} +$$$$13\!\cdots\!12$$$$p^{8} T^{20} - 54880211634179791488 p^{10} T^{21} + 1098860393015073792 p^{12} T^{22} - 14471440004155872 p^{14} T^{23} + 34861972067036 p^{16} T^{24} + 3791430241760 p^{18} T^{25} - 105845942272 p^{20} T^{26} + 1481707264 p^{22} T^{27} + 74504 p^{25} T^{28} - 602944 p^{26} T^{29} + 12800 p^{28} T^{30} - 160 p^{30} T^{31} + p^{32} T^{32}$$
59 $$1 - 128 T + 8192 T^{2} - 1121408 T^{3} + 136226184 T^{4} - 9279937408 T^{5} + 700645040128 T^{6} - 71627082366848 T^{7} + 5234572115355804 T^{8} - 316007889653226112 T^{9} + 25502997282495045632 T^{10} -$$$$19\!\cdots\!80$$$$T^{11} +$$$$10\!\cdots\!40$$$$T^{12} -$$$$69\!\cdots\!16$$$$T^{13} +$$$$51\!\cdots\!56$$$$T^{14} -$$$$29\!\cdots\!24$$$$T^{15} +$$$$15\!\cdots\!38$$$$T^{16} -$$$$29\!\cdots\!24$$$$p^{2} T^{17} +$$$$51\!\cdots\!56$$$$p^{4} T^{18} -$$$$69\!\cdots\!16$$$$p^{6} T^{19} +$$$$10\!\cdots\!40$$$$p^{8} T^{20} -$$$$19\!\cdots\!80$$$$p^{10} T^{21} + 25502997282495045632 p^{12} T^{22} - 316007889653226112 p^{14} T^{23} + 5234572115355804 p^{16} T^{24} - 71627082366848 p^{18} T^{25} + 700645040128 p^{20} T^{26} - 9279937408 p^{22} T^{27} + 136226184 p^{24} T^{28} - 1121408 p^{26} T^{29} + 8192 p^{28} T^{30} - 128 p^{30} T^{31} + p^{32} T^{32}$$
61 $$1 + 32 T + 512 T^{2} - 38048 T^{3} - 60439624 T^{4} - 1520787552 T^{5} - 16996289024 T^{6} + 2981900088544 T^{7} + 2018049968078364 T^{8} + 40394929489472928 T^{9} + 275088896591278592 T^{10} -$$$$10\!\cdots\!56$$$$T^{11} -$$$$45\!\cdots\!20$$$$T^{12} -$$$$71\!\cdots\!16$$$$T^{13} -$$$$18\!\cdots\!28$$$$T^{14} +$$$$23\!\cdots\!64$$$$T^{15} +$$$$72\!\cdots\!42$$$$T^{16} +$$$$23\!\cdots\!64$$$$p^{2} T^{17} -$$$$18\!\cdots\!28$$$$p^{4} T^{18} -$$$$71\!\cdots\!16$$$$p^{6} T^{19} -$$$$45\!\cdots\!20$$$$p^{8} T^{20} -$$$$10\!\cdots\!56$$$$p^{10} T^{21} + 275088896591278592 p^{12} T^{22} + 40394929489472928 p^{14} T^{23} + 2018049968078364 p^{16} T^{24} + 2981900088544 p^{18} T^{25} - 16996289024 p^{20} T^{26} - 1520787552 p^{22} T^{27} - 60439624 p^{24} T^{28} - 38048 p^{26} T^{29} + 512 p^{28} T^{30} + 32 p^{30} T^{31} + p^{32} T^{32}$$
67 $$1 - 320 T + 51200 T^{2} - 6047552 T^{3} + 641735304 T^{4} - 64228593856 T^{5} + 5982745065472 T^{6} - 7837468747328 p T^{7} + 43992629224199580 T^{8} - 3502096836597496384 T^{9} +$$$$26\!\cdots\!12$$$$T^{10} -$$$$19\!\cdots\!80$$$$T^{11} +$$$$14\!\cdots\!20$$$$T^{12} -$$$$10\!\cdots\!88$$$$T^{13} +$$$$71\!\cdots\!04$$$$T^{14} -$$$$48\!\cdots\!52$$$$T^{15} +$$$$32\!\cdots\!74$$$$T^{16} -$$$$48\!\cdots\!52$$$$p^{2} T^{17} +$$$$71\!\cdots\!04$$$$p^{4} T^{18} -$$$$10\!\cdots\!88$$$$p^{6} T^{19} +$$$$14\!\cdots\!20$$$$p^{8} T^{20} -$$$$19\!\cdots\!80$$$$p^{10} T^{21} +$$$$26\!\cdots\!12$$$$p^{12} T^{22} - 3502096836597496384 p^{14} T^{23} + 43992629224199580 p^{16} T^{24} - 7837468747328 p^{19} T^{25} + 5982745065472 p^{20} T^{26} - 64228593856 p^{22} T^{27} + 641735304 p^{24} T^{28} - 6047552 p^{26} T^{29} + 51200 p^{28} T^{30} - 320 p^{30} T^{31} + p^{32} T^{32}$$
71 $$( 1 + 256 T + 68104 T^{2} + 10692864 T^{3} + 1610923548 T^{4} + 179723087616 T^{5} + 18972832358712 T^{6} + 1588998739085056 T^{7} + 125568612540426694 T^{8} + 1588998739085056 p^{2} T^{9} + 18972832358712 p^{4} T^{10} + 179723087616 p^{6} T^{11} + 1610923548 p^{8} T^{12} + 10692864 p^{10} T^{13} + 68104 p^{12} T^{14} + 256 p^{14} T^{15} + p^{16} T^{16} )^{2}$$
73 $$1 - 42768 T^{2} + 946714744 T^{4} - 14391245893936 T^{6} + 167549428359087132 T^{8} -$$$$15\!\cdots\!24$$$$T^{10} +$$$$12\!\cdots\!76$$$$T^{12} -$$$$83\!\cdots\!96$$$$T^{14} +$$$$47\!\cdots\!22$$$$T^{16} -$$$$83\!\cdots\!96$$$$p^{4} T^{18} +$$$$12\!\cdots\!76$$$$p^{8} T^{20} -$$$$15\!\cdots\!24$$$$p^{12} T^{22} + 167549428359087132 p^{16} T^{24} - 14391245893936 p^{20} T^{26} + 946714744 p^{24} T^{28} - 42768 p^{28} T^{30} + p^{32} T^{32}$$
79 $$1 - 62928 T^{2} + 1905826568 T^{4} - 37296559235888 T^{6} + 534425714020543644 T^{8} -$$$$60\!\cdots\!08$$$$T^{10} +$$$$55\!\cdots\!96$$$$T^{12} -$$$$43\!\cdots\!36$$$$T^{14} +$$$$29\!\cdots\!62$$$$T^{16} -$$$$43\!\cdots\!36$$$$p^{4} T^{18} +$$$$55\!\cdots\!96$$$$p^{8} T^{20} -$$$$60\!\cdots\!08$$$$p^{12} T^{22} + 534425714020543644 p^{16} T^{24} - 37296559235888 p^{20} T^{26} + 1905826568 p^{24} T^{28} - 62928 p^{28} T^{30} + p^{32} T^{32}$$
83 $$1 - 160 T + 12800 T^{2} - 895904 T^{3} + 107479624 T^{4} - 16432771168 T^{5} + 1654826188288 T^{6} - 174484645067104 T^{7} + 18280323695716892 T^{8} - 1483531366054758688 T^{9} +$$$$11\!\cdots\!96$$$$T^{10} -$$$$11\!\cdots\!36$$$$T^{11} +$$$$13\!\cdots\!00$$$$T^{12} -$$$$12\!\cdots\!44$$$$T^{13} +$$$$89\!\cdots\!76$$$$T^{14} -$$$$74\!\cdots\!76$$$$T^{15} +$$$$61\!\cdots\!66$$$$T^{16} -$$$$74\!\cdots\!76$$$$p^{2} T^{17} +$$$$89\!\cdots\!76$$$$p^{4} T^{18} -$$$$12\!\cdots\!44$$$$p^{6} T^{19} +$$$$13\!\cdots\!00$$$$p^{8} T^{20} -$$$$11\!\cdots\!36$$$$p^{10} T^{21} +$$$$11\!\cdots\!96$$$$p^{12} T^{22} - 1483531366054758688 p^{14} T^{23} + 18280323695716892 p^{16} T^{24} - 174484645067104 p^{18} T^{25} + 1654826188288 p^{20} T^{26} - 16432771168 p^{22} T^{27} + 107479624 p^{24} T^{28} - 895904 p^{26} T^{29} + 12800 p^{28} T^{30} - 160 p^{30} T^{31} + p^{32} T^{32}$$
89 $$1 - 81008 T^{2} + 3201135736 T^{4} - 82544801381712 T^{6} + 1567286911309649436 T^{8} -$$$$23\!\cdots\!04$$$$T^{10} +$$$$28\!\cdots\!72$$$$T^{12} -$$$$29\!\cdots\!36$$$$T^{14} +$$$$25\!\cdots\!10$$$$T^{16} -$$$$29\!\cdots\!36$$$$p^{4} T^{18} +$$$$28\!\cdots\!72$$$$p^{8} T^{20} -$$$$23\!\cdots\!04$$$$p^{12} T^{22} + 1567286911309649436 p^{16} T^{24} - 82544801381712 p^{20} T^{26} + 3201135736 p^{24} T^{28} - 81008 p^{28} T^{30} + p^{32} T^{32}$$
97 $$( 1 + 38216 T^{2} + 116224 T^{3} + 770481564 T^{4} + 3485408768 T^{5} + 10857255215864 T^{6} + 49274039499776 T^{7} + 116292098553803590 T^{8} + 49274039499776 p^{2} T^{9} + 10857255215864 p^{4} T^{10} + 3485408768 p^{6} T^{11} + 770481564 p^{8} T^{12} + 116224 p^{10} T^{13} + 38216 p^{12} T^{14} + p^{16} T^{16} )^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$