Properties

Degree $2$
Conductor $144$
Sign $-0.621 - 0.783i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.32 − 0.505i)2-s + (1.48 + 1.33i)4-s + (−2.10 + 2.10i)5-s − 4.40·7-s + (−1.28 − 2.51i)8-s + (3.84 − 1.71i)10-s + (0.215 + 0.215i)11-s + (−2.73 + 2.73i)13-s + (5.82 + 2.22i)14-s + (0.430 + 3.97i)16-s + 2.36i·17-s + (0.758 + 0.758i)19-s + (−5.94 + 0.320i)20-s + (−0.175 − 0.393i)22-s − 1.75i·23-s + ⋯
L(s)  = 1  + (−0.933 − 0.357i)2-s + (0.744 + 0.667i)4-s + (−0.941 + 0.941i)5-s − 1.66·7-s + (−0.456 − 0.889i)8-s + (1.21 − 0.542i)10-s + (0.0650 + 0.0650i)11-s + (−0.758 + 0.758i)13-s + (1.55 + 0.595i)14-s + (0.107 + 0.994i)16-s + 0.573i·17-s + (0.174 + 0.174i)19-s + (−1.32 + 0.0717i)20-s + (−0.0374 − 0.0839i)22-s − 0.366i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.621 - 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $-0.621 - 0.783i$
Motivic weight: \(1\)
Character: $\chi_{144} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 144,\ (\ :1/2),\ -0.621 - 0.783i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.118743 + 0.245713i\)
\(L(\frac12)\) \(\approx\) \(0.118743 + 0.245713i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.32 + 0.505i)T \)
3 \( 1 \)
good5 \( 1 + (2.10 - 2.10i)T - 5iT^{2} \)
7 \( 1 + 4.40T + 7T^{2} \)
11 \( 1 + (-0.215 - 0.215i)T + 11iT^{2} \)
13 \( 1 + (2.73 - 2.73i)T - 13iT^{2} \)
17 \( 1 - 2.36iT - 17T^{2} \)
19 \( 1 + (-0.758 - 0.758i)T + 19iT^{2} \)
23 \( 1 + 1.75iT - 23T^{2} \)
29 \( 1 + (-5.54 - 5.54i)T + 29iT^{2} \)
31 \( 1 + 9.01iT - 31T^{2} \)
37 \( 1 + (-3.10 - 3.10i)T + 37iT^{2} \)
41 \( 1 + 10.1T + 41T^{2} \)
43 \( 1 + (3.54 - 3.54i)T - 43iT^{2} \)
47 \( 1 + 3.90T + 47T^{2} \)
53 \( 1 + (-2.71 + 2.71i)T - 53iT^{2} \)
59 \( 1 + (3.40 + 3.40i)T + 59iT^{2} \)
61 \( 1 + (1.75 - 1.75i)T - 61iT^{2} \)
67 \( 1 + (-9.11 - 9.11i)T + 67iT^{2} \)
71 \( 1 - 11.8iT - 71T^{2} \)
73 \( 1 - 0.482iT - 73T^{2} \)
79 \( 1 - 6.88iT - 79T^{2} \)
83 \( 1 + (4.79 - 4.79i)T - 83iT^{2} \)
89 \( 1 - 7.00T + 89T^{2} \)
97 \( 1 + 3.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12849057893941737602943411612, −12.18321701537019838756820210526, −11.38473908331081647588123429769, −10.22834258910860332673271829976, −9.596764207037267506754349914697, −8.274337918454254630258024489549, −7.03632347333026010804459656181, −6.50604931281048086346477378294, −3.82445704783862574617619330052, −2.78944170829984523088386842377, 0.34622736850952760303374964206, 3.13988077070056694786208827310, 5.05739704342173902425332181510, 6.49311046457557813012650474911, 7.53931740352970715085164952511, 8.597535673032101057622715391606, 9.541224545159776518375224442126, 10.35917155156619707245517063971, 11.86622457892228948186243110786, 12.45885799641801747009289121019

Graph of the $Z$-function along the critical line