Properties

Label 4-12e4-1.1-c1e2-0-5
Degree $4$
Conductor $20736$
Sign $1$
Analytic cond. $1.32214$
Root an. cond. $1.07230$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·13-s − 8·25-s + 4·37-s + 14·49-s − 20·61-s + 32·73-s − 16·97-s − 40·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 2.21·13-s − 8/5·25-s + 0.657·37-s + 2·49-s − 2.56·61-s + 3.74·73-s − 1.62·97-s − 3.83·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(20736\)    =    \(2^{8} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(1.32214\)
Root analytic conductor: \(1.07230\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 20736,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.231311325\)
\(L(\frac12)\) \(\approx\) \(1.231311325\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 160 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66087435228723288266073593815, −12.94860897294875244855465314339, −12.16288692014256542391037416544, −12.01926027725275422018720232818, −11.06515689393387037656719208575, −11.01743364068965368102355449919, −10.45561598678540356209631569305, −9.656087274818344088634370141675, −9.256047475851871712058476339581, −8.682770101656673594743778626989, −8.047594690926185793623914759732, −7.74240346995427529361484942778, −6.82380403811947813379485228639, −6.20960679757941866437092235792, −5.83724029182699751068136356638, −5.08339899657969180788829960218, −3.91618276927594421014409614953, −3.82882281227794167043136970311, −2.59850145117782529263796106565, −1.37578877750920465414474926871, 1.37578877750920465414474926871, 2.59850145117782529263796106565, 3.82882281227794167043136970311, 3.91618276927594421014409614953, 5.08339899657969180788829960218, 5.83724029182699751068136356638, 6.20960679757941866437092235792, 6.82380403811947813379485228639, 7.74240346995427529361484942778, 8.047594690926185793623914759732, 8.682770101656673594743778626989, 9.256047475851871712058476339581, 9.656087274818344088634370141675, 10.45561598678540356209631569305, 11.01743364068965368102355449919, 11.06515689393387037656719208575, 12.01926027725275422018720232818, 12.16288692014256542391037416544, 12.94860897294875244855465314339, 13.66087435228723288266073593815

Graph of the $Z$-function along the critical line