L(s) = 1 | + (0.766 + 0.766i)3-s + (0.946 + 0.946i)5-s + 0.840i·7-s − 1.82i·9-s + (3.21 − 0.809i)11-s + (4.53 + 4.53i)13-s + 1.45i·15-s − 0.629i·17-s + (−2.53 + 2.53i)19-s + (−0.644 + 0.644i)21-s − 3.15·23-s − 3.20i·25-s + (3.69 − 3.69i)27-s + (3.41 + 3.41i)29-s + 2.10i·31-s + ⋯ |
L(s) = 1 | + (0.442 + 0.442i)3-s + (0.423 + 0.423i)5-s + 0.317i·7-s − 0.608i·9-s + (0.969 − 0.244i)11-s + (1.25 + 1.25i)13-s + 0.374i·15-s − 0.152i·17-s + (−0.582 + 0.582i)19-s + (−0.140 + 0.140i)21-s − 0.657·23-s − 0.641i·25-s + (0.711 − 0.711i)27-s + (0.633 + 0.633i)29-s + 0.377i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.322537741\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.322537741\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-3.21 + 0.809i)T \) |
good | 3 | \( 1 + (-0.766 - 0.766i)T + 3iT^{2} \) |
| 5 | \( 1 + (-0.946 - 0.946i)T + 5iT^{2} \) |
| 7 | \( 1 - 0.840iT - 7T^{2} \) |
| 13 | \( 1 + (-4.53 - 4.53i)T + 13iT^{2} \) |
| 17 | \( 1 + 0.629iT - 17T^{2} \) |
| 19 | \( 1 + (2.53 - 2.53i)T - 19iT^{2} \) |
| 23 | \( 1 + 3.15T + 23T^{2} \) |
| 29 | \( 1 + (-3.41 - 3.41i)T + 29iT^{2} \) |
| 31 | \( 1 - 2.10iT - 31T^{2} \) |
| 37 | \( 1 + (6.49 + 6.49i)T + 37iT^{2} \) |
| 41 | \( 1 - 7.84T + 41T^{2} \) |
| 43 | \( 1 + (2.55 + 2.55i)T + 43iT^{2} \) |
| 47 | \( 1 - 3.26iT - 47T^{2} \) |
| 53 | \( 1 + (-7.27 - 7.27i)T + 53iT^{2} \) |
| 59 | \( 1 + (6.06 - 6.06i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.33 + 3.33i)T + 61iT^{2} \) |
| 67 | \( 1 + (-8.95 - 8.95i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.32T + 71T^{2} \) |
| 73 | \( 1 - 3.78T + 73T^{2} \) |
| 79 | \( 1 + 10.7T + 79T^{2} \) |
| 83 | \( 1 + (9.42 - 9.42i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.82iT - 89T^{2} \) |
| 97 | \( 1 + 2.21T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.522270411905132704421357203773, −8.852794520797308699116468500942, −8.488888219953976782953883035416, −7.02113060047482106219773946221, −6.36900801267388369172921907653, −5.77711210539184889459354405140, −4.18109190540855522635798980928, −3.82818159503117215493247082562, −2.60708456329974397727530088243, −1.40018039970745938902057768489,
1.04981597652888043274326206435, 2.05253497220320823135797464069, 3.28673882163420417328109975698, 4.28080960156611074609859326559, 5.33162089828842099604412821519, 6.19929977695530194610170458720, 7.01784382905351262904781822621, 8.044828116714548967870016613843, 8.479615103897806967079451573335, 9.324657549097816267640181224038