L(s) = 1 | + (0.766 + 0.766i)3-s + (0.946 + 0.946i)5-s − 0.840i·7-s − 1.82i·9-s + (0.809 − 3.21i)11-s + (−4.53 − 4.53i)13-s + 1.45i·15-s + 0.629i·17-s + (2.53 − 2.53i)19-s + (0.644 − 0.644i)21-s − 3.15·23-s − 3.20i·25-s + (3.69 − 3.69i)27-s + (−3.41 − 3.41i)29-s + 2.10i·31-s + ⋯ |
L(s) = 1 | + (0.442 + 0.442i)3-s + (0.423 + 0.423i)5-s − 0.317i·7-s − 0.608i·9-s + (0.244 − 0.969i)11-s + (−1.25 − 1.25i)13-s + 0.374i·15-s + 0.152i·17-s + (0.582 − 0.582i)19-s + (0.140 − 0.140i)21-s − 0.657·23-s − 0.641i·25-s + (0.711 − 0.711i)27-s + (−0.633 − 0.633i)29-s + 0.377i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.698024237\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.698024237\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-0.809 + 3.21i)T \) |
good | 3 | \( 1 + (-0.766 - 0.766i)T + 3iT^{2} \) |
| 5 | \( 1 + (-0.946 - 0.946i)T + 5iT^{2} \) |
| 7 | \( 1 + 0.840iT - 7T^{2} \) |
| 13 | \( 1 + (4.53 + 4.53i)T + 13iT^{2} \) |
| 17 | \( 1 - 0.629iT - 17T^{2} \) |
| 19 | \( 1 + (-2.53 + 2.53i)T - 19iT^{2} \) |
| 23 | \( 1 + 3.15T + 23T^{2} \) |
| 29 | \( 1 + (3.41 + 3.41i)T + 29iT^{2} \) |
| 31 | \( 1 - 2.10iT - 31T^{2} \) |
| 37 | \( 1 + (6.49 + 6.49i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.84T + 41T^{2} \) |
| 43 | \( 1 + (-2.55 - 2.55i)T + 43iT^{2} \) |
| 47 | \( 1 - 3.26iT - 47T^{2} \) |
| 53 | \( 1 + (-7.27 - 7.27i)T + 53iT^{2} \) |
| 59 | \( 1 + (6.06 - 6.06i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.33 - 3.33i)T + 61iT^{2} \) |
| 67 | \( 1 + (-8.95 - 8.95i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.32T + 71T^{2} \) |
| 73 | \( 1 + 3.78T + 73T^{2} \) |
| 79 | \( 1 - 10.7T + 79T^{2} \) |
| 83 | \( 1 + (-9.42 + 9.42i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.82iT - 89T^{2} \) |
| 97 | \( 1 + 2.21T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.445182449181345144778314439164, −8.731562304724771951930568462973, −7.82101074084809742259106904647, −7.02061345438413187229391786239, −6.04834759537932756857580802003, −5.31245117627083319738260578133, −4.10666568471046997747276746059, −3.24127067101652690315890506494, −2.45355009595946558807638904727, −0.62105182015329204308635363518,
1.78204855930154677053181464814, 2.15327441759664958686422717123, 3.62707753942757530953468850886, 4.88114683763008914523733078020, 5.30391153990423649872407897114, 6.70930445881122969972741058178, 7.24558524689081187759591624309, 8.065136715230401620209957419110, 8.982342605344008813283336678574, 9.615890769856648536599994967932