L(s) = 1 | + (0.766 + 0.766i)3-s + (0.946 + 0.946i)5-s − 0.840i·7-s − 1.82i·9-s + (0.809 − 3.21i)11-s + (−4.53 − 4.53i)13-s + 1.45i·15-s + 0.629i·17-s + (2.53 − 2.53i)19-s + (0.644 − 0.644i)21-s − 3.15·23-s − 3.20i·25-s + (3.69 − 3.69i)27-s + (−3.41 − 3.41i)29-s + 2.10i·31-s + ⋯ |
L(s) = 1 | + (0.442 + 0.442i)3-s + (0.423 + 0.423i)5-s − 0.317i·7-s − 0.608i·9-s + (0.244 − 0.969i)11-s + (−1.25 − 1.25i)13-s + 0.374i·15-s + 0.152i·17-s + (0.582 − 0.582i)19-s + (0.140 − 0.140i)21-s − 0.657·23-s − 0.641i·25-s + (0.711 − 0.711i)27-s + (−0.633 − 0.633i)29-s + 0.377i·31-s + ⋯ |
Λ(s)=(=(1408s/2ΓC(s)L(s)(0.400+0.916i)Λ(2−s)
Λ(s)=(=(1408s/2ΓC(s+1/2)L(s)(0.400+0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
1408
= 27⋅11
|
Sign: |
0.400+0.916i
|
Analytic conductor: |
11.2429 |
Root analytic conductor: |
3.35304 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1408(1055,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1408, ( :1/2), 0.400+0.916i)
|
Particular Values
L(1) |
≈ |
1.698024237 |
L(21) |
≈ |
1.698024237 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−0.809+3.21i)T |
good | 3 | 1+(−0.766−0.766i)T+3iT2 |
| 5 | 1+(−0.946−0.946i)T+5iT2 |
| 7 | 1+0.840iT−7T2 |
| 13 | 1+(4.53+4.53i)T+13iT2 |
| 17 | 1−0.629iT−17T2 |
| 19 | 1+(−2.53+2.53i)T−19iT2 |
| 23 | 1+3.15T+23T2 |
| 29 | 1+(3.41+3.41i)T+29iT2 |
| 31 | 1−2.10iT−31T2 |
| 37 | 1+(6.49+6.49i)T+37iT2 |
| 41 | 1+7.84T+41T2 |
| 43 | 1+(−2.55−2.55i)T+43iT2 |
| 47 | 1−3.26iT−47T2 |
| 53 | 1+(−7.27−7.27i)T+53iT2 |
| 59 | 1+(6.06−6.06i)T−59iT2 |
| 61 | 1+(−3.33−3.33i)T+61iT2 |
| 67 | 1+(−8.95−8.95i)T+67iT2 |
| 71 | 1−4.32T+71T2 |
| 73 | 1+3.78T+73T2 |
| 79 | 1−10.7T+79T2 |
| 83 | 1+(−9.42+9.42i)T−83iT2 |
| 89 | 1+1.82iT−89T2 |
| 97 | 1+2.21T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.445182449181345144778314439164, −8.731562304724771951930568462973, −7.82101074084809742259106904647, −7.02061345438413187229391786239, −6.04834759537932756857580802003, −5.31245117627083319738260578133, −4.10666568471046997747276746059, −3.24127067101652690315890506494, −2.45355009595946558807638904727, −0.62105182015329204308635363518,
1.78204855930154677053181464814, 2.15327441759664958686422717123, 3.62707753942757530953468850886, 4.88114683763008914523733078020, 5.30391153990423649872407897114, 6.70930445881122969972741058178, 7.24558524689081187759591624309, 8.065136715230401620209957419110, 8.982342605344008813283336678574, 9.615890769856648536599994967932