Properties

Label 2-14-7.4-c13-0-0
Degree $2$
Conductor $14$
Sign $-0.995 + 0.0939i$
Analytic cond. $15.0123$
Root an. cond. $3.87457$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−32 − 55.4i)2-s + (−855. + 1.48e3i)3-s + (−2.04e3 + 3.54e3i)4-s + (1.25e4 + 2.17e4i)5-s + 1.09e5·6-s + (4.88e4 + 3.07e5i)7-s + 2.62e5·8-s + (−6.67e5 − 1.15e6i)9-s + (8.02e5 − 1.39e6i)10-s + (8.50e5 − 1.47e6i)11-s + (−3.50e6 − 6.07e6i)12-s − 9.03e6·13-s + (1.54e7 − 1.25e7i)14-s − 4.29e7·15-s + (−8.38e6 − 1.45e7i)16-s + (−9.01e7 + 1.56e8i)17-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.677 + 1.17i)3-s + (−0.249 + 0.433i)4-s + (0.359 + 0.621i)5-s + 0.958·6-s + (0.156 + 0.987i)7-s + 0.353·8-s + (−0.418 − 0.724i)9-s + (0.253 − 0.439i)10-s + (0.144 − 0.250i)11-s + (−0.338 − 0.586i)12-s − 0.518·13-s + (0.549 − 0.445i)14-s − 0.973·15-s + (−0.125 − 0.216i)16-s + (−0.905 + 1.56i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0939i)\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (-0.995 + 0.0939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $-0.995 + 0.0939i$
Analytic conductor: \(15.0123\)
Root analytic conductor: \(3.87457\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: $\chi_{14} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :13/2),\ -0.995 + 0.0939i)\)

Particular Values

\(L(7)\) \(\approx\) \(0.0261589 - 0.555591i\)
\(L(\frac12)\) \(\approx\) \(0.0261589 - 0.555591i\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (32 + 55.4i)T \)
7 \( 1 + (-4.88e4 - 3.07e5i)T \)
good3 \( 1 + (855. - 1.48e3i)T + (-7.97e5 - 1.38e6i)T^{2} \)
5 \( 1 + (-1.25e4 - 2.17e4i)T + (-6.10e8 + 1.05e9i)T^{2} \)
11 \( 1 + (-8.50e5 + 1.47e6i)T + (-1.72e13 - 2.98e13i)T^{2} \)
13 \( 1 + 9.03e6T + 3.02e14T^{2} \)
17 \( 1 + (9.01e7 - 1.56e8i)T + (-4.95e15 - 8.57e15i)T^{2} \)
19 \( 1 + (1.70e7 + 2.94e7i)T + (-2.10e16 + 3.64e16i)T^{2} \)
23 \( 1 + (5.27e8 + 9.12e8i)T + (-2.52e17 + 4.36e17i)T^{2} \)
29 \( 1 - 2.18e9T + 1.02e19T^{2} \)
31 \( 1 + (-3.02e8 + 5.24e8i)T + (-1.22e19 - 2.11e19i)T^{2} \)
37 \( 1 + (8.94e9 + 1.54e10i)T + (-1.21e20 + 2.10e20i)T^{2} \)
41 \( 1 - 4.48e10T + 9.25e20T^{2} \)
43 \( 1 + 3.24e9T + 1.71e21T^{2} \)
47 \( 1 + (3.67e10 + 6.37e10i)T + (-2.73e21 + 4.72e21i)T^{2} \)
53 \( 1 + (1.45e11 - 2.51e11i)T + (-1.30e22 - 2.25e22i)T^{2} \)
59 \( 1 + (1.55e11 - 2.69e11i)T + (-5.24e22 - 9.09e22i)T^{2} \)
61 \( 1 + (-2.79e11 - 4.84e11i)T + (-8.09e22 + 1.40e23i)T^{2} \)
67 \( 1 + (-4.47e11 + 7.74e11i)T + (-2.74e23 - 4.74e23i)T^{2} \)
71 \( 1 + 6.75e11T + 1.16e24T^{2} \)
73 \( 1 + (9.03e11 - 1.56e12i)T + (-8.35e23 - 1.44e24i)T^{2} \)
79 \( 1 + (-1.57e12 - 2.72e12i)T + (-2.33e24 + 4.04e24i)T^{2} \)
83 \( 1 + 3.34e12T + 8.87e24T^{2} \)
89 \( 1 + (3.34e12 + 5.79e12i)T + (-1.09e25 + 1.90e25i)T^{2} \)
97 \( 1 - 1.01e13T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.17320211444410499545341227728, −15.81095771238611173442323679024, −14.56408175583542491290067082041, −12.43366484530904026415045783156, −11.01357970857286233864864743460, −10.16716558914762775716981859700, −8.717662488735412062520138622974, −6.05699737678555855878012955656, −4.33351481157201291120707662118, −2.38626363067284149308425982890, 0.27951950575615446141902666651, 1.48837903889266847969132186989, 4.96156213248973379642376791800, 6.63587916801606017246658549903, 7.66339074797392185411976802537, 9.589626736158788805097373249906, 11.49291918581611451783976080370, 13.00829694833716492430585396675, 14.01994895253216205814013575776, 16.06701244382730610634691652102

Graph of the $Z$-function along the critical line