Properties

Label 2-14-7.5-c12-0-4
Degree $2$
Conductor $14$
Sign $-0.0340 + 0.999i$
Analytic cond. $12.7959$
Root an. cond. $3.57713$
Motivic weight $12$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (22.6 − 39.1i)2-s + (−1.16e3 + 670. i)3-s + (−1.02e3 − 1.77e3i)4-s + (1.42e4 + 8.21e3i)5-s + 6.06e4i·6-s + (−9.60e4 + 6.80e4i)7-s − 9.26e4·8-s + (6.33e5 − 1.09e6i)9-s + (6.43e5 − 3.71e5i)10-s + (−4.64e5 − 8.03e5i)11-s + (2.37e6 + 1.37e6i)12-s − 8.24e6i·13-s + (4.92e5 + 5.30e6i)14-s − 2.20e7·15-s + (−2.09e6 + 3.63e6i)16-s + (1.17e7 − 6.77e6i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−1.59 + 0.919i)3-s + (−0.249 − 0.433i)4-s + (0.910 + 0.525i)5-s + 1.30i·6-s + (−0.816 + 0.578i)7-s − 0.353·8-s + (1.19 − 2.06i)9-s + (0.643 − 0.371i)10-s + (−0.261 − 0.453i)11-s + (0.796 + 0.459i)12-s − 1.70i·13-s + (0.0654 + 0.704i)14-s − 1.93·15-s + (−0.125 + 0.216i)16-s + (0.485 − 0.280i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0340 + 0.999i)\, \overline{\Lambda}(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & (-0.0340 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $-0.0340 + 0.999i$
Analytic conductor: \(12.7959\)
Root analytic conductor: \(3.57713\)
Motivic weight: \(12\)
Rational: no
Arithmetic: yes
Character: $\chi_{14} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :6),\ -0.0340 + 0.999i)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(0.613470 - 0.634705i\)
\(L(\frac12)\) \(\approx\) \(0.613470 - 0.634705i\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-22.6 + 39.1i)T \)
7 \( 1 + (9.60e4 - 6.80e4i)T \)
good3 \( 1 + (1.16e3 - 670. i)T + (2.65e5 - 4.60e5i)T^{2} \)
5 \( 1 + (-1.42e4 - 8.21e3i)T + (1.22e8 + 2.11e8i)T^{2} \)
11 \( 1 + (4.64e5 + 8.03e5i)T + (-1.56e12 + 2.71e12i)T^{2} \)
13 \( 1 + 8.24e6iT - 2.32e13T^{2} \)
17 \( 1 + (-1.17e7 + 6.77e6i)T + (2.91e14 - 5.04e14i)T^{2} \)
19 \( 1 + (-3.88e7 - 2.24e7i)T + (1.10e15 + 1.91e15i)T^{2} \)
23 \( 1 + (-3.53e7 + 6.12e7i)T + (-1.09e16 - 1.89e16i)T^{2} \)
29 \( 1 + 5.34e8T + 3.53e17T^{2} \)
31 \( 1 + (-1.14e9 + 6.62e8i)T + (3.93e17 - 6.82e17i)T^{2} \)
37 \( 1 + (-5.25e8 + 9.10e8i)T + (-3.29e18 - 5.70e18i)T^{2} \)
41 \( 1 + 1.78e9iT - 2.25e19T^{2} \)
43 \( 1 + 4.20e9T + 3.99e19T^{2} \)
47 \( 1 + (1.50e10 + 8.68e9i)T + (5.80e19 + 1.00e20i)T^{2} \)
53 \( 1 + (-2.46e9 - 4.27e9i)T + (-2.45e20 + 4.25e20i)T^{2} \)
59 \( 1 + (-7.90e9 + 4.56e9i)T + (8.89e20 - 1.54e21i)T^{2} \)
61 \( 1 + (-1.85e10 - 1.07e10i)T + (1.32e21 + 2.29e21i)T^{2} \)
67 \( 1 + (3.21e10 + 5.56e10i)T + (-4.09e21 + 7.08e21i)T^{2} \)
71 \( 1 + 9.11e10T + 1.64e22T^{2} \)
73 \( 1 + (1.80e11 - 1.04e11i)T + (1.14e22 - 1.98e22i)T^{2} \)
79 \( 1 + (-1.52e11 + 2.64e11i)T + (-2.95e22 - 5.11e22i)T^{2} \)
83 \( 1 + 2.37e11iT - 1.06e23T^{2} \)
89 \( 1 + (-9.71e10 - 5.60e10i)T + (1.23e23 + 2.13e23i)T^{2} \)
97 \( 1 - 9.61e11iT - 6.93e23T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.28563518493374628396342774652, −15.09639030674418138083829652977, −13.10249192455039378159913782947, −11.81331290313244282788581179122, −10.41348253075331098428989149803, −9.805751221504109357698813982880, −6.08013698831233191998622225744, −5.37849871479113949588383910412, −3.17599047292729537326060328830, −0.44603283081291402619789715413, 1.36972923895735790277844385159, 4.88462357191465809689086627040, 6.20152697540095666767364848598, 7.16459412858708722094289151799, 9.755523258474673604526027144322, 11.65799259772940031357856079446, 12.92659707271044182088409048391, 13.71120312737910349071709300264, 16.22852933033215587465430526062, 16.91412099620368509912832158449

Graph of the $Z$-function along the critical line