Properties

Label 2-14-7.3-c12-0-0
Degree $2$
Conductor $14$
Sign $-0.965 + 0.258i$
Analytic cond. $12.7959$
Root an. cond. $3.57713$
Motivic weight $12$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (22.6 + 39.1i)2-s + (−33.7 − 19.5i)3-s + (−1.02e3 + 1.77e3i)4-s + (2.48e3 − 1.43e3i)5-s − 1.76e3i·6-s + (−4.45e4 + 1.08e5i)7-s − 9.26e4·8-s + (−2.64e5 − 4.58e5i)9-s + (1.12e5 + 6.48e4i)10-s + (−1.70e6 + 2.95e6i)11-s + (6.91e4 − 3.99e4i)12-s − 6.97e6i·13-s + (−5.27e6 + 7.17e5i)14-s − 1.11e5·15-s + (−2.09e6 − 3.63e6i)16-s + (−2.47e7 − 1.42e7i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.0463 − 0.0267i)3-s + (−0.249 + 0.433i)4-s + (0.158 − 0.0917i)5-s − 0.0378i·6-s + (−0.378 + 0.925i)7-s − 0.353·8-s + (−0.498 − 0.863i)9-s + (0.112 + 0.0648i)10-s + (−0.963 + 1.66i)11-s + (0.0231 − 0.0133i)12-s − 1.44i·13-s + (−0.700 + 0.0952i)14-s − 0.00981·15-s + (−0.125 − 0.216i)16-s + (−1.02 − 0.591i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $-0.965 + 0.258i$
Analytic conductor: \(12.7959\)
Root analytic conductor: \(3.57713\)
Motivic weight: \(12\)
Rational: no
Arithmetic: yes
Character: $\chi_{14} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :6),\ -0.965 + 0.258i)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(0.0839913 - 0.637658i\)
\(L(\frac12)\) \(\approx\) \(0.0839913 - 0.637658i\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-22.6 - 39.1i)T \)
7 \( 1 + (4.45e4 - 1.08e5i)T \)
good3 \( 1 + (33.7 + 19.5i)T + (2.65e5 + 4.60e5i)T^{2} \)
5 \( 1 + (-2.48e3 + 1.43e3i)T + (1.22e8 - 2.11e8i)T^{2} \)
11 \( 1 + (1.70e6 - 2.95e6i)T + (-1.56e12 - 2.71e12i)T^{2} \)
13 \( 1 + 6.97e6iT - 2.32e13T^{2} \)
17 \( 1 + (2.47e7 + 1.42e7i)T + (2.91e14 + 5.04e14i)T^{2} \)
19 \( 1 + (4.55e7 - 2.62e7i)T + (1.10e15 - 1.91e15i)T^{2} \)
23 \( 1 + (1.55e7 + 2.70e7i)T + (-1.09e16 + 1.89e16i)T^{2} \)
29 \( 1 - 4.56e8T + 3.53e17T^{2} \)
31 \( 1 + (-1.51e9 - 8.76e8i)T + (3.93e17 + 6.82e17i)T^{2} \)
37 \( 1 + (-9.08e8 - 1.57e9i)T + (-3.29e18 + 5.70e18i)T^{2} \)
41 \( 1 - 5.14e9iT - 2.25e19T^{2} \)
43 \( 1 + 7.27e9T + 3.99e19T^{2} \)
47 \( 1 + (-3.70e9 + 2.14e9i)T + (5.80e19 - 1.00e20i)T^{2} \)
53 \( 1 + (-3.61e9 + 6.25e9i)T + (-2.45e20 - 4.25e20i)T^{2} \)
59 \( 1 + (4.46e9 + 2.57e9i)T + (8.89e20 + 1.54e21i)T^{2} \)
61 \( 1 + (-4.42e9 + 2.55e9i)T + (1.32e21 - 2.29e21i)T^{2} \)
67 \( 1 + (-3.79e10 + 6.57e10i)T + (-4.09e21 - 7.08e21i)T^{2} \)
71 \( 1 + 1.13e11T + 1.64e22T^{2} \)
73 \( 1 + (-1.51e11 - 8.72e10i)T + (1.14e22 + 1.98e22i)T^{2} \)
79 \( 1 + (1.13e11 + 1.95e11i)T + (-2.95e22 + 5.11e22i)T^{2} \)
83 \( 1 - 4.13e11iT - 1.06e23T^{2} \)
89 \( 1 + (2.25e11 - 1.30e11i)T + (1.23e23 - 2.13e23i)T^{2} \)
97 \( 1 + 4.10e11iT - 6.93e23T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.48606999316317701719716828940, −15.52994511467382337499970960188, −15.06707922421962435141331541418, −13.08740776276861287747876782597, −12.16371381291721174669223653413, −9.908885684575601012315800654763, −8.308181609298099676411742873653, −6.48172897018149596351097999522, −5.00988230373660620724522464444, −2.73635636688209454012705066053, 0.22908995015466285606503981543, 2.44934220383812357917504357975, 4.31890425845896380636999119439, 6.25893299892068418659202093966, 8.479247160650226456347244876111, 10.43525082063634029758715742317, 11.33140973447337487038466588999, 13.40535837829066377734905689146, 13.88999615024165490220530281873, 15.96814541723296374037732151238

Graph of the $Z$-function along the critical line