Properties

Label 16-14e8-1.1-c12e8-0-0
Degree $16$
Conductor $1475789056$
Sign $1$
Analytic cond. $7.18737\times 10^{8}$
Root an. cond. $3.57713$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.19e3·4-s + 1.95e5·7-s + 1.38e6·9-s − 2.13e5·11-s + 4.19e7·16-s + 1.56e8·23-s + 1.07e9·25-s + 1.59e9·28-s + 3.08e8·29-s + 1.13e10·36-s − 3.24e9·37-s + 2.10e10·43-s − 1.75e9·44-s + 9.41e9·49-s + 1.80e11·53-s + 2.70e11·63-s + 1.71e11·64-s + 3.69e11·67-s + 5.74e11·71-s − 4.17e10·77-s − 6.07e11·79-s + 9.94e11·81-s + 1.28e12·92-s − 2.96e11·99-s + 8.78e12·100-s + 2.16e11·107-s − 1.34e13·109-s + ⋯
L(s)  = 1  + 2·4-s + 1.65·7-s + 2.60·9-s − 0.120·11-s + 5/2·16-s + 1.05·23-s + 4.39·25-s + 3.31·28-s + 0.519·29-s + 5.21·36-s − 1.26·37-s + 3.32·43-s − 0.241·44-s + 0.680·49-s + 8.14·53-s + 4.32·63-s + 5/2·64-s + 4.08·67-s + 4.48·71-s − 0.200·77-s − 2.50·79-s + 3.52·81-s + 2.11·92-s − 0.314·99-s + 8.78·100-s + 0.144·107-s − 8.01·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(13-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+6)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(7.18737\times 10^{8}\)
Root analytic conductor: \(3.57713\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 7^{8} ,\ ( \ : [6]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(92.94341133\)
\(L(\frac12)\) \(\approx\) \(92.94341133\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p^{11} T^{2} )^{4} \)
7 \( 1 - 27880 p T + 585165148 p^{2} T^{2} - 34208863720 p^{6} T^{3} + 275471557162 p^{11} T^{4} - 34208863720 p^{18} T^{5} + 585165148 p^{26} T^{6} - 27880 p^{37} T^{7} + p^{48} T^{8} \)
good3 \( 1 - 462104 p T^{2} + 103072783388 p^{2} T^{4} - 291167257255784 p^{7} T^{6} + 774196723541737318 p^{12} T^{8} - 291167257255784 p^{31} T^{10} + 103072783388 p^{50} T^{12} - 462104 p^{73} T^{14} + p^{96} T^{16} \)
5 \( 1 - 8577448 p^{3} T^{2} + 577562182671894652 T^{4} - \)\(34\!\cdots\!32\)\( p^{4} T^{6} + \)\(15\!\cdots\!94\)\( p^{8} T^{8} - \)\(34\!\cdots\!32\)\( p^{28} T^{10} + 577562182671894652 p^{48} T^{12} - 8577448 p^{75} T^{14} + p^{96} T^{16} \)
11 \( ( 1 + 9720 p T + 24309397468 p^{2} T^{2} + 1673698432264200 p^{3} T^{3} + \)\(10\!\cdots\!58\)\( p^{4} T^{4} + 1673698432264200 p^{15} T^{5} + 24309397468 p^{26} T^{6} + 9720 p^{37} T^{7} + p^{48} T^{8} )^{2} \)
13 \( 1 - 118483961811080 T^{2} + \)\(72\!\cdots\!20\)\( T^{4} - \)\(21\!\cdots\!60\)\( p T^{6} + \)\(78\!\cdots\!42\)\( T^{8} - \)\(21\!\cdots\!60\)\( p^{25} T^{10} + \)\(72\!\cdots\!20\)\( p^{48} T^{12} - 118483961811080 p^{72} T^{14} + p^{96} T^{16} \)
17 \( 1 - 1555137278635016 T^{2} + \)\(11\!\cdots\!96\)\( T^{4} - \)\(73\!\cdots\!92\)\( T^{6} + \)\(44\!\cdots\!26\)\( T^{8} - \)\(73\!\cdots\!92\)\( p^{24} T^{10} + \)\(11\!\cdots\!96\)\( p^{48} T^{12} - 1555137278635016 p^{72} T^{14} + p^{96} T^{16} \)
19 \( 1 - 5862118397694152 T^{2} + \)\(21\!\cdots\!92\)\( T^{4} - \)\(55\!\cdots\!08\)\( T^{6} + \)\(12\!\cdots\!38\)\( T^{8} - \)\(55\!\cdots\!08\)\( p^{24} T^{10} + \)\(21\!\cdots\!92\)\( p^{48} T^{12} - 5862118397694152 p^{72} T^{14} + p^{96} T^{16} \)
23 \( ( 1 - 78365880 T + 63212424068847100 T^{2} - \)\(29\!\cdots\!80\)\( T^{3} + \)\(17\!\cdots\!14\)\( T^{4} - \)\(29\!\cdots\!80\)\( p^{12} T^{5} + 63212424068847100 p^{24} T^{6} - 78365880 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
29 \( ( 1 - 154426824 T + 601673598812273116 T^{2} + \)\(10\!\cdots\!52\)\( T^{3} + \)\(20\!\cdots\!66\)\( T^{4} + \)\(10\!\cdots\!52\)\( p^{12} T^{5} + 601673598812273116 p^{24} T^{6} - 154426824 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
31 \( 1 - 2302046075483163656 T^{2} + \)\(24\!\cdots\!16\)\( T^{4} - \)\(24\!\cdots\!72\)\( T^{6} + \)\(23\!\cdots\!66\)\( T^{8} - \)\(24\!\cdots\!72\)\( p^{24} T^{10} + \)\(24\!\cdots\!16\)\( p^{48} T^{12} - 2302046075483163656 p^{72} T^{14} + p^{96} T^{16} \)
37 \( ( 1 + 1621800440 T + 17056754214865778908 T^{2} + \)\(65\!\cdots\!40\)\( T^{3} + \)\(12\!\cdots\!30\)\( T^{4} + \)\(65\!\cdots\!40\)\( p^{12} T^{5} + 17056754214865778908 p^{24} T^{6} + 1621800440 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
41 \( 1 - 68082924589008676616 T^{2} + \)\(24\!\cdots\!56\)\( T^{4} - \)\(60\!\cdots\!12\)\( T^{6} + \)\(13\!\cdots\!66\)\( T^{8} - \)\(60\!\cdots\!12\)\( p^{24} T^{10} + \)\(24\!\cdots\!56\)\( p^{48} T^{12} - 68082924589008676616 p^{72} T^{14} + p^{96} T^{16} \)
43 \( ( 1 - 10503151000 T + \)\(19\!\cdots\!16\)\( T^{2} - \)\(12\!\cdots\!00\)\( T^{3} + \)\(12\!\cdots\!66\)\( T^{4} - \)\(12\!\cdots\!00\)\( p^{12} T^{5} + \)\(19\!\cdots\!16\)\( p^{24} T^{6} - 10503151000 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
47 \( 1 - \)\(33\!\cdots\!12\)\( T^{2} + \)\(71\!\cdots\!92\)\( T^{4} - \)\(11\!\cdots\!08\)\( T^{6} + \)\(15\!\cdots\!38\)\( T^{8} - \)\(11\!\cdots\!08\)\( p^{24} T^{10} + \)\(71\!\cdots\!92\)\( p^{48} T^{12} - \)\(33\!\cdots\!12\)\( p^{72} T^{14} + p^{96} T^{16} \)
53 \( ( 1 - 90222818760 T + \)\(49\!\cdots\!12\)\( T^{2} - \)\(17\!\cdots\!60\)\( T^{3} + \)\(45\!\cdots\!26\)\( T^{4} - \)\(17\!\cdots\!60\)\( p^{12} T^{5} + \)\(49\!\cdots\!12\)\( p^{24} T^{6} - 90222818760 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
59 \( 1 - \)\(73\!\cdots\!48\)\( T^{2} + \)\(29\!\cdots\!08\)\( T^{4} - \)\(82\!\cdots\!96\)\( T^{6} + \)\(16\!\cdots\!70\)\( T^{8} - \)\(82\!\cdots\!96\)\( p^{24} T^{10} + \)\(29\!\cdots\!08\)\( p^{48} T^{12} - \)\(73\!\cdots\!48\)\( p^{72} T^{14} + p^{96} T^{16} \)
61 \( 1 - \)\(12\!\cdots\!52\)\( T^{2} + \)\(69\!\cdots\!72\)\( T^{4} - \)\(24\!\cdots\!28\)\( T^{6} + \)\(70\!\cdots\!98\)\( T^{8} - \)\(24\!\cdots\!28\)\( p^{24} T^{10} + \)\(69\!\cdots\!72\)\( p^{48} T^{12} - \)\(12\!\cdots\!52\)\( p^{72} T^{14} + p^{96} T^{16} \)
67 \( ( 1 - 184605629720 T + \)\(42\!\cdots\!72\)\( T^{2} - \)\(46\!\cdots\!20\)\( T^{3} + \)\(56\!\cdots\!06\)\( T^{4} - \)\(46\!\cdots\!20\)\( p^{12} T^{5} + \)\(42\!\cdots\!72\)\( p^{24} T^{6} - 184605629720 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
71 \( ( 1 - 287029072152 T + \)\(87\!\cdots\!84\)\( T^{2} - \)\(13\!\cdots\!40\)\( T^{3} + \)\(22\!\cdots\!10\)\( T^{4} - \)\(13\!\cdots\!40\)\( p^{12} T^{5} + \)\(87\!\cdots\!84\)\( p^{24} T^{6} - 287029072152 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
73 \( 1 - \)\(15\!\cdots\!88\)\( T^{2} + \)\(11\!\cdots\!12\)\( T^{4} - \)\(47\!\cdots\!52\)\( T^{6} + \)\(13\!\cdots\!58\)\( T^{8} - \)\(47\!\cdots\!52\)\( p^{24} T^{10} + \)\(11\!\cdots\!12\)\( p^{48} T^{12} - \)\(15\!\cdots\!88\)\( p^{72} T^{14} + p^{96} T^{16} \)
79 \( ( 1 + 303913305064 T + \)\(20\!\cdots\!00\)\( T^{2} + \)\(37\!\cdots\!56\)\( T^{3} + \)\(15\!\cdots\!74\)\( T^{4} + \)\(37\!\cdots\!56\)\( p^{12} T^{5} + \)\(20\!\cdots\!00\)\( p^{24} T^{6} + 303913305064 p^{36} T^{7} + p^{48} T^{8} )^{2} \)
83 \( 1 - \)\(51\!\cdots\!84\)\( T^{2} + \)\(11\!\cdots\!44\)\( T^{4} - \)\(15\!\cdots\!24\)\( T^{6} + \)\(16\!\cdots\!70\)\( T^{8} - \)\(15\!\cdots\!24\)\( p^{24} T^{10} + \)\(11\!\cdots\!44\)\( p^{48} T^{12} - \)\(51\!\cdots\!84\)\( p^{72} T^{14} + p^{96} T^{16} \)
89 \( 1 - \)\(81\!\cdots\!60\)\( T^{2} + \)\(47\!\cdots\!00\)\( T^{4} - \)\(17\!\cdots\!60\)\( T^{6} + \)\(51\!\cdots\!62\)\( T^{8} - \)\(17\!\cdots\!60\)\( p^{24} T^{10} + \)\(47\!\cdots\!00\)\( p^{48} T^{12} - \)\(81\!\cdots\!60\)\( p^{72} T^{14} + p^{96} T^{16} \)
97 \( 1 - \)\(32\!\cdots\!40\)\( T^{2} + \)\(47\!\cdots\!60\)\( T^{4} - \)\(44\!\cdots\!40\)\( T^{6} + \)\(32\!\cdots\!22\)\( T^{8} - \)\(44\!\cdots\!40\)\( p^{24} T^{10} + \)\(47\!\cdots\!60\)\( p^{48} T^{12} - \)\(32\!\cdots\!40\)\( p^{72} T^{14} + p^{96} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.95390264860430101577309111477, −6.57767940713249198214778754535, −6.52154377695030563136281825494, −6.13266089862179480180297905727, −5.60976235784417813210840043704, −5.28253930833034712581853070817, −5.27767147032163271855782757251, −5.06375493672508534352450625753, −4.98603328929898363400003726986, −4.48562602023509759167347744055, −4.01160572555889778942883489151, −3.96185746391561968547740601369, −3.73322676802597192768627014611, −3.70248593720916924072742691250, −2.70764637171800086815188574881, −2.56032029814957121773463574944, −2.54441916295794901770372679418, −2.53022319685075672309084272612, −2.00586014192355762546262101593, −1.60508614472873612325750055259, −1.26582365170144037925615171057, −1.02894467920572099816435599676, −1.00521955906476333045225683609, −0.875809490556841484550676879137, −0.53178389396024155444550900769, 0.53178389396024155444550900769, 0.875809490556841484550676879137, 1.00521955906476333045225683609, 1.02894467920572099816435599676, 1.26582365170144037925615171057, 1.60508614472873612325750055259, 2.00586014192355762546262101593, 2.53022319685075672309084272612, 2.54441916295794901770372679418, 2.56032029814957121773463574944, 2.70764637171800086815188574881, 3.70248593720916924072742691250, 3.73322676802597192768627014611, 3.96185746391561968547740601369, 4.01160572555889778942883489151, 4.48562602023509759167347744055, 4.98603328929898363400003726986, 5.06375493672508534352450625753, 5.27767147032163271855782757251, 5.28253930833034712581853070817, 5.60976235784417813210840043704, 6.13266089862179480180297905727, 6.52154377695030563136281825494, 6.57767940713249198214778754535, 6.95390264860430101577309111477

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.