Properties

Label 2-14-7.2-c11-0-6
Degree $2$
Conductor $14$
Sign $-0.782 + 0.623i$
Analytic cond. $10.7568$
Root an. cond. $3.27975$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (16 − 27.7i)2-s + (69.1 + 119. i)3-s + (−511. − 886. i)4-s + (274. − 475. i)5-s + 4.42e3·6-s + (−2.54e4 − 3.64e4i)7-s − 3.27e4·8-s + (7.89e4 − 1.36e5i)9-s + (−8.78e3 − 1.52e4i)10-s + (−1.23e5 − 2.14e5i)11-s + (7.08e4 − 1.22e5i)12-s − 1.83e6·13-s + (−1.41e6 + 1.22e5i)14-s + 7.59e4·15-s + (−5.24e5 + 9.08e5i)16-s + (−3.08e6 − 5.34e6i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (0.164 + 0.284i)3-s + (−0.249 − 0.433i)4-s + (0.0392 − 0.0680i)5-s + 0.232·6-s + (−0.572 − 0.819i)7-s − 0.353·8-s + (0.445 − 0.772i)9-s + (−0.0277 − 0.0481i)10-s + (−0.232 − 0.401i)11-s + (0.0821 − 0.142i)12-s − 1.37·13-s + (−0.704 + 0.0606i)14-s + 0.0258·15-s + (−0.125 + 0.216i)16-s + (−0.526 − 0.912i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.782 + 0.623i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.782 + 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $-0.782 + 0.623i$
Analytic conductor: \(10.7568\)
Root analytic conductor: \(3.27975\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{14} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :11/2),\ -0.782 + 0.623i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.495626 - 1.41723i\)
\(L(\frac12)\) \(\approx\) \(0.495626 - 1.41723i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-16 + 27.7i)T \)
7 \( 1 + (2.54e4 + 3.64e4i)T \)
good3 \( 1 + (-69.1 - 119. i)T + (-8.85e4 + 1.53e5i)T^{2} \)
5 \( 1 + (-274. + 475. i)T + (-2.44e7 - 4.22e7i)T^{2} \)
11 \( 1 + (1.23e5 + 2.14e5i)T + (-1.42e11 + 2.47e11i)T^{2} \)
13 \( 1 + 1.83e6T + 1.79e12T^{2} \)
17 \( 1 + (3.08e6 + 5.34e6i)T + (-1.71e13 + 2.96e13i)T^{2} \)
19 \( 1 + (-8.41e5 + 1.45e6i)T + (-5.82e13 - 1.00e14i)T^{2} \)
23 \( 1 + (-8.79e6 + 1.52e7i)T + (-4.76e14 - 8.25e14i)T^{2} \)
29 \( 1 - 1.50e8T + 1.22e16T^{2} \)
31 \( 1 + (-5.90e7 - 1.02e8i)T + (-1.27e16 + 2.20e16i)T^{2} \)
37 \( 1 + (-2.77e8 + 4.80e8i)T + (-8.89e16 - 1.54e17i)T^{2} \)
41 \( 1 + 4.42e8T + 5.50e17T^{2} \)
43 \( 1 + 5.11e8T + 9.29e17T^{2} \)
47 \( 1 + (-3.64e7 + 6.31e7i)T + (-1.23e18 - 2.14e18i)T^{2} \)
53 \( 1 + (5.60e8 + 9.71e8i)T + (-4.63e18 + 8.02e18i)T^{2} \)
59 \( 1 + (-4.44e9 - 7.70e9i)T + (-1.50e19 + 2.61e19i)T^{2} \)
61 \( 1 + (4.28e8 - 7.41e8i)T + (-2.17e19 - 3.76e19i)T^{2} \)
67 \( 1 + (1.95e9 + 3.39e9i)T + (-6.10e19 + 1.05e20i)T^{2} \)
71 \( 1 + 2.40e9T + 2.31e20T^{2} \)
73 \( 1 + (1.22e10 + 2.12e10i)T + (-1.56e20 + 2.71e20i)T^{2} \)
79 \( 1 + (-1.75e10 + 3.04e10i)T + (-3.73e20 - 6.47e20i)T^{2} \)
83 \( 1 - 6.12e10T + 1.28e21T^{2} \)
89 \( 1 + (1.76e10 - 3.05e10i)T + (-1.38e21 - 2.40e21i)T^{2} \)
97 \( 1 - 1.31e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.24719722981417723644809008306, −14.78587655403221320252555947379, −13.43798497931319538396415820548, −12.16171018592050140644198848855, −10.45183290897099640750122171845, −9.309169481472270580676297316384, −6.92028360030846654754261650210, −4.65757345000322346618800266234, −3.01337058184945248721127549766, −0.59310987018229284807386746760, 2.48000016799933002580070895472, 4.85666899907774975184667146611, 6.64943066780886379378273731135, 8.171390266183584925889307877470, 9.965744979814440163484810013192, 12.21324878060225996949618623310, 13.25467259400661917896973696365, 14.79171453158729007402749755231, 15.88152647654551616672627257194, 17.26352515237617088884122843260

Graph of the $Z$-function along the critical line