Properties

Label 2-14-7.4-c9-0-2
Degree $2$
Conductor $14$
Sign $0.332 - 0.942i$
Analytic cond. $7.21050$
Root an. cond. $2.68523$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (8 + 13.8i)2-s + (38.4 − 66.5i)3-s + (−127. + 221. i)4-s + (546. + 945. i)5-s + 1.22e3·6-s + (6.11e3 + 1.73e3i)7-s − 4.09e3·8-s + (6.88e3 + 1.19e4i)9-s + (−8.73e3 + 1.51e4i)10-s + (−2.70e4 + 4.68e4i)11-s + (9.83e3 + 1.70e4i)12-s + 3.78e4·13-s + (2.48e4 + 9.85e4i)14-s + 8.39e4·15-s + (−3.27e4 − 5.67e4i)16-s + (1.76e5 − 3.06e5i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.273 − 0.474i)3-s + (−0.249 + 0.433i)4-s + (0.390 + 0.676i)5-s + 0.387·6-s + (0.962 + 0.272i)7-s − 0.353·8-s + (0.349 + 0.606i)9-s + (−0.276 + 0.478i)10-s + (−0.556 + 0.964i)11-s + (0.136 + 0.237i)12-s + 0.367·13-s + (0.173 + 0.685i)14-s + 0.428·15-s + (−0.125 − 0.216i)16-s + (0.513 − 0.888i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 - 0.942i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.332 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $0.332 - 0.942i$
Analytic conductor: \(7.21050\)
Root analytic conductor: \(2.68523\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{14} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :9/2),\ 0.332 - 0.942i)\)

Particular Values

\(L(5)\) \(\approx\) \(1.89166 + 1.33810i\)
\(L(\frac12)\) \(\approx\) \(1.89166 + 1.33810i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-8 - 13.8i)T \)
7 \( 1 + (-6.11e3 - 1.73e3i)T \)
good3 \( 1 + (-38.4 + 66.5i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (-546. - 945. i)T + (-9.76e5 + 1.69e6i)T^{2} \)
11 \( 1 + (2.70e4 - 4.68e4i)T + (-1.17e9 - 2.04e9i)T^{2} \)
13 \( 1 - 3.78e4T + 1.06e10T^{2} \)
17 \( 1 + (-1.76e5 + 3.06e5i)T + (-5.92e10 - 1.02e11i)T^{2} \)
19 \( 1 + (2.51e4 + 4.34e4i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (1.22e6 + 2.12e6i)T + (-9.00e11 + 1.55e12i)T^{2} \)
29 \( 1 - 1.40e6T + 1.45e13T^{2} \)
31 \( 1 + (2.89e6 - 5.00e6i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + (2.72e6 + 4.72e6i)T + (-6.49e13 + 1.12e14i)T^{2} \)
41 \( 1 + 1.73e7T + 3.27e14T^{2} \)
43 \( 1 - 1.43e6T + 5.02e14T^{2} \)
47 \( 1 + (1.52e7 + 2.63e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (-2.15e6 + 3.73e6i)T + (-1.64e15 - 2.85e15i)T^{2} \)
59 \( 1 + (-3.30e7 + 5.72e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (-1.00e8 - 1.74e8i)T + (-5.84e15 + 1.01e16i)T^{2} \)
67 \( 1 + (-1.36e8 + 2.36e8i)T + (-1.36e16 - 2.35e16i)T^{2} \)
71 \( 1 - 1.43e8T + 4.58e16T^{2} \)
73 \( 1 + (-1.84e8 + 3.18e8i)T + (-2.94e16 - 5.09e16i)T^{2} \)
79 \( 1 + (2.31e8 + 4.01e8i)T + (-5.99e16 + 1.03e17i)T^{2} \)
83 \( 1 + 7.47e8T + 1.86e17T^{2} \)
89 \( 1 + (-5.63e8 - 9.76e8i)T + (-1.75e17 + 3.03e17i)T^{2} \)
97 \( 1 + 1.27e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.96800679080578823838986189328, −16.17672008548012322223464338900, −14.70791415680969632152579938207, −13.83468451938482129881210223362, −12.33627582265913440622297757873, −10.42009798902072105414000861766, −8.219204014963705242011530924024, −6.93702263886968952486089283688, −4.94805609011934341831533276933, −2.25701673191906726057769793808, 1.32387113186369133833605957055, 3.78386950716898048662296284090, 5.49882248627150216124032924102, 8.381416905889511643979105141567, 9.908908623928403674539422108107, 11.37462258974041157039367478786, 12.99183584292842227296956941455, 14.22190624394328208389026808002, 15.61225587394821155318010873558, 17.22831203791343874214841040543

Graph of the $Z$-function along the critical line