Properties

Degree $2$
Conductor $1386$
Sign $-0.992 - 0.124i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s − 2.01·5-s + (1.78 − 1.95i)7-s i·8-s − 2.01i·10-s i·11-s + (1.95 + 1.78i)14-s + 16-s − 5.92·17-s + 0.657i·19-s + 2.01·20-s + 22-s + 7.87i·23-s − 0.935·25-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s − 0.901·5-s + (0.674 − 0.738i)7-s − 0.353i·8-s − 0.637i·10-s − 0.301i·11-s + (0.522 + 0.476i)14-s + 0.250·16-s − 1.43·17-s + 0.150i·19-s + 0.450·20-s + 0.213·22-s + 1.64i·23-s − 0.187·25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.124i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.992 - 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1386\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11\)
Sign: $-0.992 - 0.124i$
Motivic weight: \(1\)
Character: $\chi_{1386} (881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1386,\ (\ :1/2),\ -0.992 - 0.124i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4977785972\)
\(L(\frac12)\) \(\approx\) \(0.4977785972\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
7 \( 1 + (-1.78 + 1.95i)T \)
11 \( 1 + iT \)
good5 \( 1 + 2.01T + 5T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 5.92T + 17T^{2} \)
19 \( 1 - 0.657iT - 19T^{2} \)
23 \( 1 - 7.87iT - 23T^{2} \)
29 \( 1 - 1.32iT - 29T^{2} \)
31 \( 1 - 10.6iT - 31T^{2} \)
37 \( 1 - 5.87T + 37T^{2} \)
41 \( 1 + 4.56T + 41T^{2} \)
43 \( 1 + 1.56T + 43T^{2} \)
47 \( 1 + 0.532T + 47T^{2} \)
53 \( 1 - 7.44iT - 53T^{2} \)
59 \( 1 + 4.03T + 59T^{2} \)
61 \( 1 - 0.250iT - 61T^{2} \)
67 \( 1 + 7.81T + 67T^{2} \)
71 \( 1 + 0.609iT - 71T^{2} \)
73 \( 1 - 0.532iT - 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 + 13.3T + 83T^{2} \)
89 \( 1 + 5.22T + 89T^{2} \)
97 \( 1 + 2.71iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.878961986464154028901685394721, −8.843723630707035732276887071894, −8.280513964158303568041225392339, −7.42625880111329211565664536848, −6.99051325709528223579453070000, −5.87609826606295377404408711576, −4.83651534565699658831539613074, −4.17742205639530758507593160463, −3.26029878987666779959214796227, −1.44619804943248609932544687152, 0.20710212772328822983037646612, 1.97429731284927676804491253368, 2.78442464699102101094145984748, 4.24964112737107025257995797980, 4.50676337077889612331500671297, 5.75058043744890810437758567924, 6.76763400780272104899895835753, 7.87574201810813478687907467136, 8.416532425666386559778813434423, 9.153127333249108462747133427936

Graph of the $Z$-function along the critical line