L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.346 − 0.199i)5-s + (1.03 − 2.43i)7-s + 0.999·8-s + (0.346 − 0.199i)10-s + (3.01 − 1.38i)11-s − 0.164i·13-s + (1.58 + 2.11i)14-s + (−0.5 + 0.866i)16-s + (0.906 + 1.57i)17-s + (−5.41 − 3.12i)19-s + 0.399i·20-s + (−0.308 + 3.30i)22-s + (3.76 + 2.17i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.154 − 0.0894i)5-s + (0.392 − 0.919i)7-s + 0.353·8-s + (0.109 − 0.0632i)10-s + (0.908 − 0.417i)11-s − 0.0456i·13-s + (0.424 + 0.565i)14-s + (−0.125 + 0.216i)16-s + (0.219 + 0.380i)17-s + (−1.24 − 0.717i)19-s + 0.0894i·20-s + (−0.0656 + 0.704i)22-s + (0.785 + 0.453i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.498 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.498 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.141192757\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.141192757\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.03 + 2.43i)T \) |
| 11 | \( 1 + (-3.01 + 1.38i)T \) |
good | 5 | \( 1 + (0.346 + 0.199i)T + (2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 + 0.164iT - 13T^{2} \) |
| 17 | \( 1 + (-0.906 - 1.57i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (5.41 + 3.12i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.76 - 2.17i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.12T + 29T^{2} \) |
| 31 | \( 1 + (0.141 + 0.245i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.40 + 4.16i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 9.23T + 41T^{2} \) |
| 43 | \( 1 + 2.07iT - 43T^{2} \) |
| 47 | \( 1 + (-0.367 - 0.212i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.71 + 4.45i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.92 + 3.99i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.10 + 3.52i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.0327 - 0.0567i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.43iT - 71T^{2} \) |
| 73 | \( 1 + (-7.21 + 4.16i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.531 - 0.306i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 1.91T + 83T^{2} \) |
| 89 | \( 1 + (-8.89 - 5.13i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 15.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.273399890777351762108391453442, −8.556015334963669333590801588667, −7.86404786687011518396159747932, −6.96266784861469033133089540819, −6.39990267769559002868838560691, −5.32108666179296105488490394953, −4.33960576232032900129806965247, −3.60976700423994372806974448782, −1.86950095173751219641652908194, −0.55179331296738508284855690396,
1.44764323424111812538126488470, 2.40424900975067407701277981612, 3.56174382870260796781411359829, 4.48613371908775662818142436645, 5.48075601715429640113472248179, 6.49811573838720645352694445973, 7.40212111916618030378940183713, 8.368059127847642329301894632427, 8.934425871316848448066161365221, 9.655902318713140582555714856452