Properties

Degree $2$
Conductor $1386$
Sign $0.327 - 0.944i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.42 + 0.822i)5-s + (2.58 − 0.551i)7-s + 0.999·8-s + (−1.42 + 0.822i)10-s + (2.53 + 2.13i)11-s + 1.29i·13-s + (−0.816 + 2.51i)14-s + (−0.5 + 0.866i)16-s + (1.68 + 2.91i)17-s + (−0.340 − 0.196i)19-s − 1.64i·20-s + (−3.11 + 1.13i)22-s + (0.455 + 0.262i)23-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.636 + 0.367i)5-s + (0.978 − 0.208i)7-s + 0.353·8-s + (−0.450 + 0.259i)10-s + (0.765 + 0.643i)11-s + 0.358i·13-s + (−0.218 + 0.672i)14-s + (−0.125 + 0.216i)16-s + (0.408 + 0.707i)17-s + (−0.0780 − 0.0450i)19-s − 0.367i·20-s + (−0.664 + 0.241i)22-s + (0.0949 + 0.0548i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.327 - 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.327 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1386\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11\)
Sign: $0.327 - 0.944i$
Motivic weight: \(1\)
Character: $\chi_{1386} (989, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1386,\ (\ :1/2),\ 0.327 - 0.944i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.801885159\)
\(L(\frac12)\) \(\approx\) \(1.801885159\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 \)
7 \( 1 + (-2.58 + 0.551i)T \)
11 \( 1 + (-2.53 - 2.13i)T \)
good5 \( 1 + (-1.42 - 0.822i)T + (2.5 + 4.33i)T^{2} \)
13 \( 1 - 1.29iT - 13T^{2} \)
17 \( 1 + (-1.68 - 2.91i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.340 + 0.196i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.455 - 0.262i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 1.33T + 29T^{2} \)
31 \( 1 + (2.86 + 4.97i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-1.50 + 2.61i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 10.9T + 41T^{2} \)
43 \( 1 - 10.5iT - 43T^{2} \)
47 \( 1 + (-4.48 - 2.59i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-1.43 + 0.830i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (8.26 - 4.77i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (3.32 + 1.91i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (6.80 + 11.7i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 1.62iT - 71T^{2} \)
73 \( 1 + (8.82 - 5.09i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-7.22 - 4.17i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 - 5.98T + 83T^{2} \)
89 \( 1 + (-8.32 - 4.80i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 - 8.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.505609021578674720606769217258, −9.070343229216819392867800511382, −7.88750446744233692425991588008, −7.48653656149159736782384473147, −6.37034763136011704516451471937, −5.87295708576356850956839369304, −4.70685406179960514324896225170, −3.98350634029635700760909224693, −2.28764679638155957586466899111, −1.32786221248608525928439272265, 0.986049292675528842400061804358, 1.94322609761701542642721852216, 3.12090743734545153348885961743, 4.22774651679099610427691071170, 5.24649670764742625135936317574, 5.89648644459613452394599343181, 7.19306782226062408722506823422, 7.957712718058740566973135491311, 9.008775176766839056178930413592, 9.129034054212460819389353761115

Graph of the $Z$-function along the critical line