Properties

Degree $2$
Conductor $1386$
Sign $-0.781 + 0.624i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−3.19 + 1.84i)5-s + (−1.52 + 2.15i)7-s + 0.999·8-s + (3.19 + 1.84i)10-s + (0.412 − 3.29i)11-s + 5.60i·13-s + (2.63 + 0.245i)14-s + (−0.5 − 0.866i)16-s + (−1.39 + 2.41i)17-s + (−2.14 + 1.23i)19-s − 3.69i·20-s + (−3.05 + 1.28i)22-s + (3.26 − 1.88i)23-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−1.42 + 0.825i)5-s + (−0.578 + 0.815i)7-s + 0.353·8-s + (1.01 + 0.583i)10-s + (0.124 − 0.992i)11-s + 1.55i·13-s + (0.704 + 0.0656i)14-s + (−0.125 − 0.216i)16-s + (−0.338 + 0.585i)17-s + (−0.492 + 0.284i)19-s − 0.825i·20-s + (−0.651 + 0.274i)22-s + (0.680 − 0.392i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.781 + 0.624i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.781 + 0.624i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1386\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11\)
Sign: $-0.781 + 0.624i$
Motivic weight: \(1\)
Character: $\chi_{1386} (1187, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1386,\ (\ :1/2),\ -0.781 + 0.624i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08157599825\)
\(L(\frac12)\) \(\approx\) \(0.08157599825\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 \)
7 \( 1 + (1.52 - 2.15i)T \)
11 \( 1 + (-0.412 + 3.29i)T \)
good5 \( 1 + (3.19 - 1.84i)T + (2.5 - 4.33i)T^{2} \)
13 \( 1 - 5.60iT - 13T^{2} \)
17 \( 1 + (1.39 - 2.41i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.14 - 1.23i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.26 + 1.88i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + 1.51T + 29T^{2} \)
31 \( 1 + (1.70 - 2.94i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-2.85 - 4.95i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 6.24T + 41T^{2} \)
43 \( 1 + 7.72iT - 43T^{2} \)
47 \( 1 + (-8.98 + 5.18i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (9.27 + 5.35i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (11.6 + 6.71i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (2.13 - 1.23i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-5.66 + 9.81i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 5.15iT - 71T^{2} \)
73 \( 1 + (4.53 + 2.62i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (0.250 - 0.144i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + 10.2T + 83T^{2} \)
89 \( 1 + (-13.7 + 7.93i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 - 4.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.999984907675847781383349339041, −8.715592750495988044007651129167, −7.79031292669865340305497035032, −6.78997254981652311370380163180, −6.26739930746099925562799570081, −4.74761897911049648295298140919, −3.71785085162487272154433625651, −3.21129517958780044378559664040, −2.01276711321343140177604759677, −0.04679359025663189343132581812, 1.00238124942084706913503764984, 3.04218645515034403392386233281, 4.17759917777756416132369127584, 4.70976498246521428088114175122, 5.77851822523925265770577356282, 7.00462174391409477390485605832, 7.52721433077990459654470816531, 8.046538191958766459081008666538, 9.039834159974058828480512170234, 9.660432258912941220521732600590

Graph of the $Z$-function along the critical line