Properties

Label 2-138-1.1-c7-0-24
Degree $2$
Conductor $138$
Sign $-1$
Analytic cond. $43.1091$
Root an. cond. $6.56575$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 27·3-s + 64·4-s + 200.·5-s − 216·6-s − 286·7-s + 512·8-s + 729·9-s + 1.60e3·10-s − 6.73e3·11-s − 1.72e3·12-s − 161.·13-s − 2.28e3·14-s − 5.40e3·15-s + 4.09e3·16-s − 1.90e4·17-s + 5.83e3·18-s + 4.03e4·19-s + 1.28e4·20-s + 7.72e3·21-s − 5.38e4·22-s − 1.21e4·23-s − 1.38e4·24-s − 3.80e4·25-s − 1.29e3·26-s − 1.96e4·27-s − 1.83e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.716·5-s − 0.408·6-s − 0.315·7-s + 0.353·8-s + 0.333·9-s + 0.506·10-s − 1.52·11-s − 0.288·12-s − 0.0203·13-s − 0.222·14-s − 0.413·15-s + 0.250·16-s − 0.939·17-s + 0.235·18-s + 1.35·19-s + 0.358·20-s + 0.181·21-s − 1.07·22-s − 0.208·23-s − 0.204·24-s − 0.486·25-s − 0.0144·26-s − 0.192·27-s − 0.157·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $-1$
Analytic conductor: \(43.1091\)
Root analytic conductor: \(6.56575\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 138,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
3 \( 1 + 27T \)
23 \( 1 + 1.21e4T \)
good5 \( 1 - 200.T + 7.81e4T^{2} \)
7 \( 1 + 286T + 8.23e5T^{2} \)
11 \( 1 + 6.73e3T + 1.94e7T^{2} \)
13 \( 1 + 161.T + 6.27e7T^{2} \)
17 \( 1 + 1.90e4T + 4.10e8T^{2} \)
19 \( 1 - 4.03e4T + 8.93e8T^{2} \)
29 \( 1 - 1.58e4T + 1.72e10T^{2} \)
31 \( 1 + 9.05e4T + 2.75e10T^{2} \)
37 \( 1 + 1.09e5T + 9.49e10T^{2} \)
41 \( 1 + 5.26e5T + 1.94e11T^{2} \)
43 \( 1 + 6.14e5T + 2.71e11T^{2} \)
47 \( 1 - 5.90e5T + 5.06e11T^{2} \)
53 \( 1 + 2.02e6T + 1.17e12T^{2} \)
59 \( 1 + 8.07e5T + 2.48e12T^{2} \)
61 \( 1 + 3.07e6T + 3.14e12T^{2} \)
67 \( 1 - 4.22e6T + 6.06e12T^{2} \)
71 \( 1 - 2.18e6T + 9.09e12T^{2} \)
73 \( 1 + 1.93e6T + 1.10e13T^{2} \)
79 \( 1 - 6.27e6T + 1.92e13T^{2} \)
83 \( 1 + 9.51e6T + 2.71e13T^{2} \)
89 \( 1 - 3.66e6T + 4.42e13T^{2} \)
97 \( 1 + 5.15e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.39338483710664844897935178925, −10.44662553797160600482080230864, −9.553549056069846306668223818657, −7.889431582517759639854041030447, −6.69508249662584098501819474713, −5.62564690441765406836878312744, −4.85849258587799177294765055317, −3.17127092814312610250792824418, −1.85260559868264223748567473408, 0, 1.85260559868264223748567473408, 3.17127092814312610250792824418, 4.85849258587799177294765055317, 5.62564690441765406836878312744, 6.69508249662584098501819474713, 7.889431582517759639854041030447, 9.553549056069846306668223818657, 10.44662553797160600482080230864, 11.39338483710664844897935178925

Graph of the $Z$-function along the critical line