Properties

Label 2-138-1.1-c5-0-9
Degree $2$
Conductor $138$
Sign $-1$
Analytic cond. $22.1329$
Root an. cond. $4.70456$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 9·3-s + 16·4-s − 73.1·5-s + 36·6-s + 90.1·7-s − 64·8-s + 81·9-s + 292.·10-s + 481.·11-s − 144·12-s − 57.0·13-s − 360.·14-s + 658.·15-s + 256·16-s − 1.08e3·17-s − 324·18-s + 2.24e3·19-s − 1.17e3·20-s − 811.·21-s − 1.92e3·22-s − 529·23-s + 576·24-s + 2.22e3·25-s + 228.·26-s − 729·27-s + 1.44e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.30·5-s + 0.408·6-s + 0.695·7-s − 0.353·8-s + 0.333·9-s + 0.925·10-s + 1.19·11-s − 0.288·12-s − 0.0936·13-s − 0.491·14-s + 0.755·15-s + 0.250·16-s − 0.910·17-s − 0.235·18-s + 1.42·19-s − 0.654·20-s − 0.401·21-s − 0.847·22-s − 0.208·23-s + 0.204·24-s + 0.712·25-s + 0.0662·26-s − 0.192·27-s + 0.347·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $-1$
Analytic conductor: \(22.1329\)
Root analytic conductor: \(4.70456\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 138,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 + 9T \)
23 \( 1 + 529T \)
good5 \( 1 + 73.1T + 3.12e3T^{2} \)
7 \( 1 - 90.1T + 1.68e4T^{2} \)
11 \( 1 - 481.T + 1.61e5T^{2} \)
13 \( 1 + 57.0T + 3.71e5T^{2} \)
17 \( 1 + 1.08e3T + 1.41e6T^{2} \)
19 \( 1 - 2.24e3T + 2.47e6T^{2} \)
29 \( 1 + 4.47e3T + 2.05e7T^{2} \)
31 \( 1 - 5.87e3T + 2.86e7T^{2} \)
37 \( 1 + 1.05e4T + 6.93e7T^{2} \)
41 \( 1 + 4.01e3T + 1.15e8T^{2} \)
43 \( 1 + 2.11e4T + 1.47e8T^{2} \)
47 \( 1 - 2.87e3T + 2.29e8T^{2} \)
53 \( 1 + 1.20e4T + 4.18e8T^{2} \)
59 \( 1 + 3.60e4T + 7.14e8T^{2} \)
61 \( 1 + 7.60e3T + 8.44e8T^{2} \)
67 \( 1 - 3.84e4T + 1.35e9T^{2} \)
71 \( 1 + 1.75e4T + 1.80e9T^{2} \)
73 \( 1 + 9.46e3T + 2.07e9T^{2} \)
79 \( 1 - 7.96e4T + 3.07e9T^{2} \)
83 \( 1 - 6.37e4T + 3.93e9T^{2} \)
89 \( 1 + 9.42e4T + 5.58e9T^{2} \)
97 \( 1 + 1.23e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64371376006668782627161241807, −11.00909910840574941484123889916, −9.637202500280959376222003680724, −8.488993135427417842693109275030, −7.53071192333979073061545104742, −6.57094086035408450335056739671, −4.90032766202886901807842011605, −3.62124609818277329604769581681, −1.43204416460074913665357417615, 0, 1.43204416460074913665357417615, 3.62124609818277329604769581681, 4.90032766202886901807842011605, 6.57094086035408450335056739671, 7.53071192333979073061545104742, 8.488993135427417842693109275030, 9.637202500280959376222003680724, 11.00909910840574941484123889916, 11.64371376006668782627161241807

Graph of the $Z$-function along the critical line