Properties

Label 2-138-1.1-c5-0-2
Degree $2$
Conductor $138$
Sign $1$
Analytic cond. $22.1329$
Root an. cond. $4.70456$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 9·3-s + 16·4-s − 48.0·5-s − 36·6-s − 163.·7-s + 64·8-s + 81·9-s − 192.·10-s + 261.·11-s − 144·12-s + 860.·13-s − 653.·14-s + 432.·15-s + 256·16-s + 676.·17-s + 324·18-s + 1.93e3·19-s − 768.·20-s + 1.47e3·21-s + 1.04e3·22-s − 529·23-s − 576·24-s − 819.·25-s + 3.44e3·26-s − 729·27-s − 2.61e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.858·5-s − 0.408·6-s − 1.26·7-s + 0.353·8-s + 0.333·9-s − 0.607·10-s + 0.651·11-s − 0.288·12-s + 1.41·13-s − 0.891·14-s + 0.495·15-s + 0.250·16-s + 0.567·17-s + 0.235·18-s + 1.23·19-s − 0.429·20-s + 0.727·21-s + 0.460·22-s − 0.208·23-s − 0.204·24-s − 0.262·25-s + 0.998·26-s − 0.192·27-s − 0.630·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $1$
Analytic conductor: \(22.1329\)
Root analytic conductor: \(4.70456\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.980088879\)
\(L(\frac12)\) \(\approx\) \(1.980088879\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 + 9T \)
23 \( 1 + 529T \)
good5 \( 1 + 48.0T + 3.12e3T^{2} \)
7 \( 1 + 163.T + 1.68e4T^{2} \)
11 \( 1 - 261.T + 1.61e5T^{2} \)
13 \( 1 - 860.T + 3.71e5T^{2} \)
17 \( 1 - 676.T + 1.41e6T^{2} \)
19 \( 1 - 1.93e3T + 2.47e6T^{2} \)
29 \( 1 - 4.96e3T + 2.05e7T^{2} \)
31 \( 1 + 2.87e3T + 2.86e7T^{2} \)
37 \( 1 - 6.98e3T + 6.93e7T^{2} \)
41 \( 1 - 1.86e3T + 1.15e8T^{2} \)
43 \( 1 - 9.17e3T + 1.47e8T^{2} \)
47 \( 1 - 6.60e3T + 2.29e8T^{2} \)
53 \( 1 - 2.69e4T + 4.18e8T^{2} \)
59 \( 1 + 2.84e4T + 7.14e8T^{2} \)
61 \( 1 + 1.81e3T + 8.44e8T^{2} \)
67 \( 1 - 1.78e4T + 1.35e9T^{2} \)
71 \( 1 + 2.66e4T + 1.80e9T^{2} \)
73 \( 1 + 4.10e4T + 2.07e9T^{2} \)
79 \( 1 - 3.95e4T + 3.07e9T^{2} \)
83 \( 1 - 6.32e4T + 3.93e9T^{2} \)
89 \( 1 - 1.38e5T + 5.58e9T^{2} \)
97 \( 1 + 1.73e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.16985393716468678787290119747, −11.57121869580930344449111704392, −10.46074295268657719538521051092, −9.247989103840756074716273785428, −7.71955263469418789642141080790, −6.56993007150118389262693954562, −5.73201844459514051818983734533, −4.09394241689977808636657504783, −3.26913690441940758785273466900, −0.902596065726272207102489256856, 0.902596065726272207102489256856, 3.26913690441940758785273466900, 4.09394241689977808636657504783, 5.73201844459514051818983734533, 6.56993007150118389262693954562, 7.71955263469418789642141080790, 9.247989103840756074716273785428, 10.46074295268657719538521051092, 11.57121869580930344449111704392, 12.16985393716468678787290119747

Graph of the $Z$-function along the critical line