Properties

Label 2-138-23.16-c3-0-6
Degree $2$
Conductor $138$
Sign $0.743 + 0.668i$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.30 − 1.51i)2-s + (2.52 − 1.62i)3-s + (−0.569 − 3.95i)4-s + (5.61 + 12.2i)5-s + (0.853 − 5.93i)6-s + (18.2 − 5.37i)7-s + (−6.73 − 4.32i)8-s + (3.73 − 8.18i)9-s + (25.9 + 7.61i)10-s + (1.50 + 1.73i)11-s + (−7.85 − 9.06i)12-s + (42.5 + 12.5i)13-s + (15.8 − 34.6i)14-s + (34.1 + 21.9i)15-s + (−15.3 + 4.50i)16-s + (1.53 − 10.6i)17-s + ⋯
L(s)  = 1  + (0.463 − 0.534i)2-s + (0.485 − 0.312i)3-s + (−0.0711 − 0.494i)4-s + (0.502 + 1.09i)5-s + (0.0580 − 0.404i)6-s + (0.988 − 0.290i)7-s + (−0.297 − 0.191i)8-s + (0.138 − 0.303i)9-s + (0.819 + 0.240i)10-s + (0.0413 + 0.0476i)11-s + (−0.189 − 0.218i)12-s + (0.908 + 0.266i)13-s + (0.302 − 0.662i)14-s + (0.586 + 0.377i)15-s + (−0.239 + 0.0704i)16-s + (0.0218 − 0.152i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.743 + 0.668i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.743 + 0.668i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $0.743 + 0.668i$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (85, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ 0.743 + 0.668i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.64619 - 1.01413i\)
\(L(\frac12)\) \(\approx\) \(2.64619 - 1.01413i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.30 + 1.51i)T \)
3 \( 1 + (-2.52 + 1.62i)T \)
23 \( 1 + (71.7 + 83.8i)T \)
good5 \( 1 + (-5.61 - 12.2i)T + (-81.8 + 94.4i)T^{2} \)
7 \( 1 + (-18.2 + 5.37i)T + (288. - 185. i)T^{2} \)
11 \( 1 + (-1.50 - 1.73i)T + (-189. + 1.31e3i)T^{2} \)
13 \( 1 + (-42.5 - 12.5i)T + (1.84e3 + 1.18e3i)T^{2} \)
17 \( 1 + (-1.53 + 10.6i)T + (-4.71e3 - 1.38e3i)T^{2} \)
19 \( 1 + (5.62 + 39.0i)T + (-6.58e3 + 1.93e3i)T^{2} \)
29 \( 1 + (18.2 - 126. i)T + (-2.34e4 - 6.87e3i)T^{2} \)
31 \( 1 + (178. + 114. i)T + (1.23e4 + 2.70e4i)T^{2} \)
37 \( 1 + (14.5 - 31.7i)T + (-3.31e4 - 3.82e4i)T^{2} \)
41 \( 1 + (-206. - 451. i)T + (-4.51e4 + 5.20e4i)T^{2} \)
43 \( 1 + (-68.6 + 44.1i)T + (3.30e4 - 7.23e4i)T^{2} \)
47 \( 1 + 193.T + 1.03e5T^{2} \)
53 \( 1 + (416. - 122. i)T + (1.25e5 - 8.04e4i)T^{2} \)
59 \( 1 + (-414. - 121. i)T + (1.72e5 + 1.11e5i)T^{2} \)
61 \( 1 + (316. + 203. i)T + (9.42e4 + 2.06e5i)T^{2} \)
67 \( 1 + (243. - 280. i)T + (-4.28e4 - 2.97e5i)T^{2} \)
71 \( 1 + (685. - 791. i)T + (-5.09e4 - 3.54e5i)T^{2} \)
73 \( 1 + (-11.0 - 76.7i)T + (-3.73e5 + 1.09e5i)T^{2} \)
79 \( 1 + (-348. - 102. i)T + (4.14e5 + 2.66e5i)T^{2} \)
83 \( 1 + (-305. + 668. i)T + (-3.74e5 - 4.32e5i)T^{2} \)
89 \( 1 + (1.11e3 - 713. i)T + (2.92e5 - 6.41e5i)T^{2} \)
97 \( 1 + (655. + 1.43e3i)T + (-5.97e5 + 6.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75544389165127222200828512509, −11.35354329568397504277750551741, −10.84047760542859851875131470494, −9.676475263767691033976285842292, −8.379485157496138903437139651543, −7.09004962451544149811421604967, −6.00316937038871392242142015167, −4.36089958676548978550434142100, −2.92733087438701668966164518714, −1.63252142671726661952323197883, 1.72883710456997338766691967462, 3.80833721891079996915936224334, 5.04451907248729734844751217058, 5.89616548207142069590954692818, 7.73538069581415738325007732031, 8.549358616589029214626151940671, 9.366914369403925795407655419061, 10.84090196229637865464926818079, 12.07206942387493820569639671895, 13.06219450666795919019164695941

Graph of the $Z$-function along the critical line