Properties

Label 2-138-23.16-c3-0-11
Degree $2$
Conductor $138$
Sign $-0.929 + 0.368i$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.30 − 1.51i)2-s + (2.52 − 1.62i)3-s + (−0.569 − 3.95i)4-s + (−3.70 − 8.11i)5-s + (0.853 − 5.93i)6-s + (−24.4 + 7.16i)7-s + (−6.73 − 4.32i)8-s + (3.73 − 8.18i)9-s + (−17.1 − 5.02i)10-s + (−47.4 − 54.7i)11-s + (−7.85 − 9.06i)12-s + (64.0 + 18.8i)13-s + (−21.1 + 46.2i)14-s + (−22.5 − 14.4i)15-s + (−15.3 + 4.50i)16-s + (−6.65 + 46.3i)17-s + ⋯
L(s)  = 1  + (0.463 − 0.534i)2-s + (0.485 − 0.312i)3-s + (−0.0711 − 0.494i)4-s + (−0.331 − 0.725i)5-s + (0.0580 − 0.404i)6-s + (−1.31 + 0.386i)7-s + (−0.297 − 0.191i)8-s + (0.138 − 0.303i)9-s + (−0.541 − 0.158i)10-s + (−1.30 − 1.50i)11-s + (−0.189 − 0.218i)12-s + (1.36 + 0.401i)13-s + (−0.403 + 0.883i)14-s + (−0.387 − 0.248i)15-s + (−0.239 + 0.0704i)16-s + (−0.0950 + 0.660i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $-0.929 + 0.368i$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (85, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ -0.929 + 0.368i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.290682 - 1.52086i\)
\(L(\frac12)\) \(\approx\) \(0.290682 - 1.52086i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.30 + 1.51i)T \)
3 \( 1 + (-2.52 + 1.62i)T \)
23 \( 1 + (-106. + 26.9i)T \)
good5 \( 1 + (3.70 + 8.11i)T + (-81.8 + 94.4i)T^{2} \)
7 \( 1 + (24.4 - 7.16i)T + (288. - 185. i)T^{2} \)
11 \( 1 + (47.4 + 54.7i)T + (-189. + 1.31e3i)T^{2} \)
13 \( 1 + (-64.0 - 18.8i)T + (1.84e3 + 1.18e3i)T^{2} \)
17 \( 1 + (6.65 - 46.3i)T + (-4.71e3 - 1.38e3i)T^{2} \)
19 \( 1 + (7.81 + 54.3i)T + (-6.58e3 + 1.93e3i)T^{2} \)
29 \( 1 + (-22.2 + 154. i)T + (-2.34e4 - 6.87e3i)T^{2} \)
31 \( 1 + (97.8 + 62.8i)T + (1.23e4 + 2.70e4i)T^{2} \)
37 \( 1 + (172. - 377. i)T + (-3.31e4 - 3.82e4i)T^{2} \)
41 \( 1 + (78.6 + 172. i)T + (-4.51e4 + 5.20e4i)T^{2} \)
43 \( 1 + (-242. + 155. i)T + (3.30e4 - 7.23e4i)T^{2} \)
47 \( 1 - 46.9T + 1.03e5T^{2} \)
53 \( 1 + (-735. + 215. i)T + (1.25e5 - 8.04e4i)T^{2} \)
59 \( 1 + (-274. - 80.5i)T + (1.72e5 + 1.11e5i)T^{2} \)
61 \( 1 + (10.4 + 6.74i)T + (9.42e4 + 2.06e5i)T^{2} \)
67 \( 1 + (-5.50 + 6.35i)T + (-4.28e4 - 2.97e5i)T^{2} \)
71 \( 1 + (-689. + 795. i)T + (-5.09e4 - 3.54e5i)T^{2} \)
73 \( 1 + (-121. - 847. i)T + (-3.73e5 + 1.09e5i)T^{2} \)
79 \( 1 + (835. + 245. i)T + (4.14e5 + 2.66e5i)T^{2} \)
83 \( 1 + (0.313 - 0.686i)T + (-3.74e5 - 4.32e5i)T^{2} \)
89 \( 1 + (772. - 496. i)T + (2.92e5 - 6.41e5i)T^{2} \)
97 \( 1 + (278. + 608. i)T + (-5.97e5 + 6.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57373561484473364808204152350, −11.35996215519763624670888880276, −10.34495284288625791943211909669, −8.908809231512166286957090679555, −8.414881346974138034425766922259, −6.56598882528398543878527693980, −5.52979002400889818677536353739, −3.80044509103964662400956884147, −2.75367497100661103018764588885, −0.62077137558109252178290851773, 2.87616634279841569828544670432, 3.82140875916054913813559793011, 5.38277136281290393315648525513, 6.90209498423629164463718671515, 7.48889143860065126709638406081, 8.942187723972305198012959221912, 10.13247434261200527767507969607, 10.91343590564923446272150696692, 12.67801329422172306408049688699, 13.09647232118611514529445340195

Graph of the $Z$-function along the critical line