Properties

Label 2-138-23.3-c3-0-8
Degree $2$
Conductor $138$
Sign $-0.621 + 0.783i$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.284 − 1.97i)2-s + (−1.24 + 2.72i)3-s + (−3.83 + 1.12i)4-s + (−11.4 + 13.2i)5-s + (5.75 + 1.69i)6-s + (16.3 − 10.4i)7-s + (3.32 + 7.27i)8-s + (−5.89 − 6.80i)9-s + (29.4 + 18.9i)10-s + (9.06 − 63.0i)11-s + (1.70 − 11.8i)12-s + (−51.1 − 32.8i)13-s + (−25.4 − 29.3i)14-s + (−21.8 − 47.7i)15-s + (13.4 − 8.65i)16-s + (−79.9 − 23.4i)17-s + ⋯
L(s)  = 1  + (−0.100 − 0.699i)2-s + (−0.239 + 0.525i)3-s + (−0.479 + 0.140i)4-s + (−1.02 + 1.18i)5-s + (0.391 + 0.115i)6-s + (0.881 − 0.566i)7-s + (0.146 + 0.321i)8-s + (−0.218 − 0.251i)9-s + (0.930 + 0.598i)10-s + (0.248 − 1.72i)11-s + (0.0410 − 0.285i)12-s + (−1.09 − 0.701i)13-s + (−0.484 − 0.559i)14-s + (−0.375 − 0.821i)15-s + (0.210 − 0.135i)16-s + (−1.14 − 0.334i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $-0.621 + 0.783i$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ -0.621 + 0.783i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.284746 - 0.589408i\)
\(L(\frac12)\) \(\approx\) \(0.284746 - 0.589408i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.284 + 1.97i)T \)
3 \( 1 + (1.24 - 2.72i)T \)
23 \( 1 + (-24.3 - 107. i)T \)
good5 \( 1 + (11.4 - 13.2i)T + (-17.7 - 123. i)T^{2} \)
7 \( 1 + (-16.3 + 10.4i)T + (142. - 312. i)T^{2} \)
11 \( 1 + (-9.06 + 63.0i)T + (-1.27e3 - 374. i)T^{2} \)
13 \( 1 + (51.1 + 32.8i)T + (912. + 1.99e3i)T^{2} \)
17 \( 1 + (79.9 + 23.4i)T + (4.13e3 + 2.65e3i)T^{2} \)
19 \( 1 + (-114. + 33.7i)T + (5.77e3 - 3.70e3i)T^{2} \)
29 \( 1 + (19.4 + 5.72i)T + (2.05e4 + 1.31e4i)T^{2} \)
31 \( 1 + (106. + 233. i)T + (-1.95e4 + 2.25e4i)T^{2} \)
37 \( 1 + (55.5 + 64.0i)T + (-7.20e3 + 5.01e4i)T^{2} \)
41 \( 1 + (-36.2 + 41.8i)T + (-9.80e3 - 6.82e4i)T^{2} \)
43 \( 1 + (-157. + 345. i)T + (-5.20e4 - 6.00e4i)T^{2} \)
47 \( 1 + 619.T + 1.03e5T^{2} \)
53 \( 1 + (-108. + 69.7i)T + (6.18e4 - 1.35e5i)T^{2} \)
59 \( 1 + (253. + 163. i)T + (8.53e4 + 1.86e5i)T^{2} \)
61 \( 1 + (-125. - 275. i)T + (-1.48e5 + 1.71e5i)T^{2} \)
67 \( 1 + (-48.8 - 339. i)T + (-2.88e5 + 8.47e4i)T^{2} \)
71 \( 1 + (-63.1 - 439. i)T + (-3.43e5 + 1.00e5i)T^{2} \)
73 \( 1 + (-707. + 207. i)T + (3.27e5 - 2.10e5i)T^{2} \)
79 \( 1 + (1.02e3 + 655. i)T + (2.04e5 + 4.48e5i)T^{2} \)
83 \( 1 + (-283. - 327. i)T + (-8.13e4 + 5.65e5i)T^{2} \)
89 \( 1 + (376. - 823. i)T + (-4.61e5 - 5.32e5i)T^{2} \)
97 \( 1 + (636. - 734. i)T + (-1.29e5 - 9.03e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.71114673734284214945884264120, −11.27128230694206646612497273411, −10.73970086792680392590636054238, −9.455104010122351647387530784755, −8.071728658086210132159950606396, −7.17986049034209353358174637122, −5.35402870718496890332159389847, −3.93416450164541979389273091598, −2.96090410420568921015325031234, −0.35838787878227311409214016612, 1.66337371368569300396809873173, 4.58725939574183028639503971513, 4.97526499614574458556286562167, 6.86443725512283566093878827185, 7.71156510448730915115085811274, 8.633051759425539323668349262266, 9.610317688328313371287023805166, 11.42410299390750623739775353992, 12.27215084879301579454788164076, 12.73284926436389528877720409073

Graph of the $Z$-function along the critical line