Properties

Label 2-138-23.13-c3-0-8
Degree $2$
Conductor $138$
Sign $-0.165 + 0.986i$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.30 − 1.51i)2-s + (−2.52 − 1.62i)3-s + (−0.569 + 3.95i)4-s + (6.04 − 13.2i)5-s + (0.853 + 5.93i)6-s + (29.2 + 8.59i)7-s + (6.73 − 4.32i)8-s + (3.73 + 8.18i)9-s + (−27.9 + 8.19i)10-s + (−31.1 + 35.9i)11-s + (7.85 − 9.06i)12-s + (68.3 − 20.0i)13-s + (−25.3 − 55.5i)14-s + (−36.7 + 23.5i)15-s + (−15.3 − 4.50i)16-s + (−18.4 − 128. i)17-s + ⋯
L(s)  = 1  + (−0.463 − 0.534i)2-s + (−0.485 − 0.312i)3-s + (−0.0711 + 0.494i)4-s + (0.540 − 1.18i)5-s + (0.0580 + 0.404i)6-s + (1.58 + 0.464i)7-s + (0.297 − 0.191i)8-s + (0.138 + 0.303i)9-s + (−0.882 + 0.259i)10-s + (−0.853 + 0.985i)11-s + (0.189 − 0.218i)12-s + (1.45 − 0.428i)13-s + (−0.483 − 1.05i)14-s + (−0.632 + 0.406i)15-s + (−0.239 − 0.0704i)16-s + (−0.262 − 1.82i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.165 + 0.986i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.165 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $-0.165 + 0.986i$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ -0.165 + 0.986i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.880223 - 1.04059i\)
\(L(\frac12)\) \(\approx\) \(0.880223 - 1.04059i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.30 + 1.51i)T \)
3 \( 1 + (2.52 + 1.62i)T \)
23 \( 1 + (-3.92 + 110. i)T \)
good5 \( 1 + (-6.04 + 13.2i)T + (-81.8 - 94.4i)T^{2} \)
7 \( 1 + (-29.2 - 8.59i)T + (288. + 185. i)T^{2} \)
11 \( 1 + (31.1 - 35.9i)T + (-189. - 1.31e3i)T^{2} \)
13 \( 1 + (-68.3 + 20.0i)T + (1.84e3 - 1.18e3i)T^{2} \)
17 \( 1 + (18.4 + 128. i)T + (-4.71e3 + 1.38e3i)T^{2} \)
19 \( 1 + (-6.80 + 47.3i)T + (-6.58e3 - 1.93e3i)T^{2} \)
29 \( 1 + (-18.3 - 127. i)T + (-2.34e4 + 6.87e3i)T^{2} \)
31 \( 1 + (148. - 95.2i)T + (1.23e4 - 2.70e4i)T^{2} \)
37 \( 1 + (84.2 + 184. i)T + (-3.31e4 + 3.82e4i)T^{2} \)
41 \( 1 + (-0.354 + 0.775i)T + (-4.51e4 - 5.20e4i)T^{2} \)
43 \( 1 + (53.3 + 34.3i)T + (3.30e4 + 7.23e4i)T^{2} \)
47 \( 1 - 387.T + 1.03e5T^{2} \)
53 \( 1 + (320. + 94.1i)T + (1.25e5 + 8.04e4i)T^{2} \)
59 \( 1 + (-437. + 128. i)T + (1.72e5 - 1.11e5i)T^{2} \)
61 \( 1 + (159. - 102. i)T + (9.42e4 - 2.06e5i)T^{2} \)
67 \( 1 + (-672. - 775. i)T + (-4.28e4 + 2.97e5i)T^{2} \)
71 \( 1 + (330. + 381. i)T + (-5.09e4 + 3.54e5i)T^{2} \)
73 \( 1 + (-111. + 775. i)T + (-3.73e5 - 1.09e5i)T^{2} \)
79 \( 1 + (557. - 163. i)T + (4.14e5 - 2.66e5i)T^{2} \)
83 \( 1 + (-456. - 998. i)T + (-3.74e5 + 4.32e5i)T^{2} \)
89 \( 1 + (-4.70 - 3.02i)T + (2.92e5 + 6.41e5i)T^{2} \)
97 \( 1 + (-274. + 600. i)T + (-5.97e5 - 6.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.38591107999244162416804691031, −11.37650429264398275335062571020, −10.59454568628125289892113339119, −9.132031344323130633981539183382, −8.452662032849570415732000741890, −7.28739351114549166568713001584, −5.33761819905815632292205920865, −4.77649259120259238646606927909, −2.17865275709380060448708605451, −0.959513353263904827948790920583, 1.60489669173144546518009625804, 3.87835715476908739736808823260, 5.59186898934784181260469105100, 6.31588854791455156290763524090, 7.75959198407064604121408256405, 8.572525177511849542771297844810, 10.22505299151948535927306306318, 10.90283195366784727071847720698, 11.31907508104016999162869380405, 13.38649133160921787356542502856

Graph of the $Z$-function along the critical line