Properties

Label 2-138-23.6-c3-0-4
Degree $2$
Conductor $138$
Sign $0.359 - 0.933i$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.830 − 1.81i)2-s + (2.87 + 0.845i)3-s + (−2.61 − 3.02i)4-s + (−11.8 + 7.61i)5-s + (3.92 − 4.53i)6-s + (−2.71 + 18.8i)7-s + (−7.67 + 2.25i)8-s + (7.57 + 4.86i)9-s + (4.01 + 27.9i)10-s + (10.5 + 23.1i)11-s + (−4.98 − 10.9i)12-s + (7.11 + 49.4i)13-s + (32.1 + 20.6i)14-s + (−40.5 + 11.9i)15-s + (−2.27 + 15.8i)16-s + (11.1 − 12.8i)17-s + ⋯
L(s)  = 1  + (0.293 − 0.643i)2-s + (0.553 + 0.162i)3-s + (−0.327 − 0.377i)4-s + (−1.06 + 0.681i)5-s + (0.267 − 0.308i)6-s + (−0.146 + 1.01i)7-s + (−0.339 + 0.0996i)8-s + (0.280 + 0.180i)9-s + (0.126 + 0.882i)10-s + (0.290 + 0.635i)11-s + (−0.119 − 0.262i)12-s + (0.151 + 1.05i)13-s + (0.612 + 0.393i)14-s + (−0.698 + 0.205i)15-s + (−0.0355 + 0.247i)16-s + (0.159 − 0.183i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.359 - 0.933i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.359 - 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $0.359 - 0.933i$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ 0.359 - 0.933i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.21014 + 0.830375i\)
\(L(\frac12)\) \(\approx\) \(1.21014 + 0.830375i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.830 + 1.81i)T \)
3 \( 1 + (-2.87 - 0.845i)T \)
23 \( 1 + (94.8 + 56.3i)T \)
good5 \( 1 + (11.8 - 7.61i)T + (51.9 - 113. i)T^{2} \)
7 \( 1 + (2.71 - 18.8i)T + (-329. - 96.6i)T^{2} \)
11 \( 1 + (-10.5 - 23.1i)T + (-871. + 1.00e3i)T^{2} \)
13 \( 1 + (-7.11 - 49.4i)T + (-2.10e3 + 618. i)T^{2} \)
17 \( 1 + (-11.1 + 12.8i)T + (-699. - 4.86e3i)T^{2} \)
19 \( 1 + (0.505 + 0.582i)T + (-976. + 6.78e3i)T^{2} \)
29 \( 1 + (32.5 - 37.5i)T + (-3.47e3 - 2.41e4i)T^{2} \)
31 \( 1 + (35.1 - 10.3i)T + (2.50e4 - 1.61e4i)T^{2} \)
37 \( 1 + (-179. - 115. i)T + (2.10e4 + 4.60e4i)T^{2} \)
41 \( 1 + (26.7 - 17.2i)T + (2.86e4 - 6.26e4i)T^{2} \)
43 \( 1 + (-377. - 110. i)T + (6.68e4 + 4.29e4i)T^{2} \)
47 \( 1 + 288.T + 1.03e5T^{2} \)
53 \( 1 + (-16.9 + 118. i)T + (-1.42e5 - 4.19e4i)T^{2} \)
59 \( 1 + (105. + 734. i)T + (-1.97e5 + 5.78e4i)T^{2} \)
61 \( 1 + (305. - 89.6i)T + (1.90e5 - 1.22e5i)T^{2} \)
67 \( 1 + (143. - 314. i)T + (-1.96e5 - 2.27e5i)T^{2} \)
71 \( 1 + (-282. + 619. i)T + (-2.34e5 - 2.70e5i)T^{2} \)
73 \( 1 + (359. + 414. i)T + (-5.53e4 + 3.85e5i)T^{2} \)
79 \( 1 + (-152. - 1.05e3i)T + (-4.73e5 + 1.38e5i)T^{2} \)
83 \( 1 + (-535. - 344. i)T + (2.37e5 + 5.20e5i)T^{2} \)
89 \( 1 + (-1.03e3 - 304. i)T + (5.93e5 + 3.81e5i)T^{2} \)
97 \( 1 + (-1.08e3 + 697. i)T + (3.79e5 - 8.30e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.65626146581830573314913270974, −11.87618074518526797296768268184, −11.11576395959158260158682995623, −9.798306845149533697971688882986, −8.900553579840653463634339870001, −7.68500514681912140460569235171, −6.36833658436227989166078623913, −4.58610050265502696296356692636, −3.48653851582503196864426516652, −2.19063617851287937588651472087, 0.63829133689563548652870938935, 3.47349628474410930283354991625, 4.31302981077679342338861012066, 5.91964797235935560207518530680, 7.47469706131605083575432611545, 7.970961487942315589178324081234, 9.025551827471242274172141217658, 10.43458896183932853888073886365, 11.74496706448415267029784022033, 12.78602082159887276480871657397

Graph of the $Z$-function along the critical line