Properties

Label 4-138e2-1.1-c3e2-0-0
Degree $4$
Conductor $19044$
Sign $1$
Analytic cond. $66.2964$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 6·3-s + 12·4-s + 2·5-s − 24·6-s + 28·7-s − 32·8-s + 27·9-s − 8·10-s − 2·11-s + 72·12-s + 48·13-s − 112·14-s + 12·15-s + 80·16-s − 4·17-s − 108·18-s + 78·19-s + 24·20-s + 168·21-s + 8·22-s + 46·23-s − 192·24-s + 30·25-s − 192·26-s + 108·27-s + 336·28-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 3/2·4-s + 0.178·5-s − 1.63·6-s + 1.51·7-s − 1.41·8-s + 9-s − 0.252·10-s − 0.0548·11-s + 1.73·12-s + 1.02·13-s − 2.13·14-s + 0.206·15-s + 5/4·16-s − 0.0570·17-s − 1.41·18-s + 0.941·19-s + 0.268·20-s + 1.74·21-s + 0.0775·22-s + 0.417·23-s − 1.63·24-s + 6/25·25-s − 1.44·26-s + 0.769·27-s + 2.26·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19044 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19044 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19044\)    =    \(2^{2} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(66.2964\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 19044,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.604240369\)
\(L(\frac12)\) \(\approx\) \(2.604240369\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
3$C_1$ \( ( 1 - p T )^{2} \)
23$C_1$ \( ( 1 - p T )^{2} \)
good5$D_{4}$ \( 1 - 2 T - 26 T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \)
7$C_2$ \( ( 1 - 2 p T + p^{3} T^{2} )^{2} \)
11$D_{4}$ \( 1 + 2 T + 2386 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 48 T + 3862 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 4 T + 8722 T^{2} + 4 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 78 T + 14962 T^{2} - 78 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 184 T + 29542 T^{2} - 184 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 308 T + 82190 T^{2} - 308 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 10 p T + 133038 T^{2} - 10 p^{4} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 12 T - 21674 T^{2} - 12 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 186 T + 154090 T^{2} - 186 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 528 T + 237454 T^{2} + 528 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 926 T + 505198 T^{2} + 926 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 396 T + p^{3} T^{2} )^{2} \)
61$D_{4}$ \( 1 + 42 T + 75190 T^{2} + 42 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 434 T - 71862 T^{2} + 434 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 624 T + 454174 T^{2} - 624 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 352 T + 222878 T^{2} + 352 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 508 T + 979682 T^{2} + 508 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 994 T + 552658 T^{2} - 994 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2^2$ \( 1 + 1050946 T^{2} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 784 T + 1791758 T^{2} + 784 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92547374292640140061553706827, −12.43755053477478623304791088344, −11.51874829601357341761018361530, −11.46346895271236946855007320141, −10.80338180608618076843475459457, −10.32544424462697176954639539465, −9.599129657065987123088264412173, −9.377351173382723522284502619962, −8.663072910594084586633661286783, −8.198342416190642307891909845669, −7.912456106442472046486934570338, −7.56443054271149334091599031904, −6.50354488659117272555901927697, −6.24402351624511836170189210087, −4.97182291819632518984955449146, −4.48606376082978908015948317524, −3.22365923693788166579937934315, −2.69011601631536817334069759172, −1.54757530377360437695308602992, −1.13894015711225150596684799843, 1.13894015711225150596684799843, 1.54757530377360437695308602992, 2.69011601631536817334069759172, 3.22365923693788166579937934315, 4.48606376082978908015948317524, 4.97182291819632518984955449146, 6.24402351624511836170189210087, 6.50354488659117272555901927697, 7.56443054271149334091599031904, 7.912456106442472046486934570338, 8.198342416190642307891909845669, 8.663072910594084586633661286783, 9.377351173382723522284502619962, 9.599129657065987123088264412173, 10.32544424462697176954639539465, 10.80338180608618076843475459457, 11.46346895271236946855007320141, 11.51874829601357341761018361530, 12.43755053477478623304791088344, 12.92547374292640140061553706827

Graph of the $Z$-function along the critical line